HOME

TheInfoList



OR:

MOLPRO is a software package used for accurate ''
ab initio ''Ab initio'' ( ) is a Latin term meaning "from the beginning" and is derived from the Latin ''ab'' ("from") + ''initio'', ablative singular of ''initium'' ("beginning"). Etymology Circa 1600, from Latin, literally "from the beginning", from ab ...
''
quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
calculations. It is developed by Peter Knowles at
Cardiff University , latin_name = , image_name = Shield of the University of Cardiff.svg , image_size = 150px , caption = Coat of arms of Cardiff University , motto = cy, Gwirionedd, Undod a Chytgord , mottoeng = Truth, Unity and Concord , established = 1 ...
and Hans-Joachim Werner at
Universität Stuttgart The University of Stuttgart (german: Universität Stuttgart) is a leading research university located in Stuttgart, Germany. It was founded in 1829 and is organized into 10 faculties. It is one of the oldest technical universities in Germany wit ...
in collaboration with other authors. The emphasis in the program is on highly accurate computations, with extensive treatment of the electron correlation problem through the
multireference configuration interaction In quantum chemistry, the multireference configuration interaction (MRCI) method consists of a configuration interaction expansion of the eigenstates of the electronic molecular Hamiltonian in a set of Slater determinants which correspond to excita ...
,
coupled cluster Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in ...
and associated methods. Integral-direct local electron correlation methods reduce the increase of the computational cost with molecular size. Accurate ab initio calculations can then be performed for larger molecules. With new explicitly correlated methods the basis set limit can be very closely approached.


History

Molpro was designed and maintained by Wilfried Meyer and
Peter Pulay Peter Pulay (born September 20, 1941, in Veszprém, Hungary) is a theoretical chemist. He is the Roger B. Bost Distinguished Professor of Chemistry in the Department of Chemistry and Biochemistry at the University of Arkansas, United States. One ...
in the late 1960s. At that moment, Pulay developed the first analytical gradient code called Hartree-Fock (HF), and Meyer researched his PNO-CEPA (pseudo-natural orbital coupled-electron pair approximation) methods. In 1980, Werner and Meyer developed a new state-averaged, quadratically convergent (MC-SCF) method, which provided geometry optimization for multireference cases. By the same year, the first internally contracted multireference configuration interaction (IC-MRCI) program was developed by Werner and Reinsch. About four years later (1984), Werner and Knowles developed on a new generation program called CASSCF (complete active space SCF). This new CASSCF program combined fast orbital optimization algorithms with determinant-based full CI codes, and additional, more general, unitary group configuration interaction (CI) codes. This resulted in the quadratically convergent MCSCF/CASSCF code called MULTI, which allowed modals to be optimized a weighted energy average of several states, and is capable of treating both completely general configuration expansions. In fact, this method is still available today. In addition to these organizational developments, Knowles and Werner started to cooperate on a new, more efficient, IC-MRCI method. Extensions for accurate treatments of excited states became possible through a new IC-MRCI method. In brief, the present IC-MRCI will be described as MRCI. These recently developed MCSCF and MRCI methods resulted in the basis of the modern Molpro. In the following years, a number of new programs were added. Analytic energy gradients can be evaluated with coupled-cluster calculations, density functional theory (DFT), as well as many other programs. These structural changes make the code more modular and easier to use and maintain, and also reduces the probability of input error.


See also


References


External links


MOLPRO Official Site
{{Chemistry software Computational chemistry software