Multiplicity Theory
   HOME
*





Multiplicity Theory
In abstract algebra, multiplicity theory concerns the multiplicity of a module ''M'' at an ideal ''I'' (often a maximal ideal) :\mathbf_I(M). The notion of the multiplicity of a module is a generalization of the degree of a projective variety. By Serre's intersection formula, it is linked to an intersection multiplicity in the intersection theory. The main focus of the theory is to detect and measure a singular point of an algebraic variety (cf. resolution of singularities). Because of this aspect, valuation theory, Rees algebras and integral closure are intimately connected to multiplicity theory. Multiplicity of a module Let ''R'' be a positively graded ring such that ''R'' is finitely generated as an ''R''0-algebra and ''R''0 is Artinian. Note that ''R'' has finite Krull dimension ''d''. Let ''M'' be a finitely generated ''R''-module and ''F''''M''(''t'') its Hilbert–Poincaré series. This series is a rational function of the form :\frac, where P(t) is a polynomial. By ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artinian Ring
In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition. Precisely, a ring is left Artinian if it satisfies the descending chain condition on left ideals, right Artinian if it satisfies the descending chain condition on right ideals, and Artinian or two-sided Artinian if it is both left and right Artinian. For commutative rings the left and right definitions coincide, but in general they are distinct from each other. The Artin–Wedderburn theorem charact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert–Kunz Function
In algebra, the Hilbert–Kunz function of a local ring (''R'', ''m'') of prime characteristic ''p'' is the function :f(q) = \operatorname_R(R/m^) where ''q'' is a power of ''p'' and ''m'' 'q''/sup> is the ideal generated by the ''q''-th powers of elements of the maximal ideal ''m''. The notion was introduced by Ernst Kunz, who used it to characterize a regular ring as a Noetherian ring in which the Frobenius morphism is flat Flat or flats may refer to: Architecture * Flat (housing), an apartment in the United Kingdom, Ireland, Australia and other Commonwealth countries Arts and entertainment * Flat (music), a symbol () which denotes a lower pitch * Flat (soldier), .... If d is the dimension of the local ring, Monsky showed that f(q)/(q^d) is c+O(1/q) for some real constant c. This constant, the "Hilbert-Kunz" multiplicity", is greater than or equal to 1. Watanabe and Yoshida strengthened some of Kunz's results, showing that in the unmixed case, the ring is regular precisely ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


J-multiplicity
In algebra, a j-multiplicity is a generalization of a Hilbert–Samuel multiplicity. For ''m''-primary ideals, the two notions coincide. Definition Let (R, \mathfrak) be a local Noetherian ring of Krull dimension d > 0. Then the j-multiplicity of an ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considere ... ''I'' is :j(I) = j(\operatorname_I R) where j(\operatorname_I R) is the normalized coefficient of the degree ''d'' − 1 term in the Hilbert polynomial \Gamma_\mathfrak(\operatorname_I R); \Gamma_\mathfrak means the space of sections supported at \mathfrak. References *Daniel Katz, Javid ValidashtiMultiplicities and Rees valuations* Commutative algebra {{commutative-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dimension Theory (algebra)
In mathematics, dimension theory is the study in terms of commutative algebra of the notion dimension of an algebraic variety (and by extension that of a scheme). The need of a ''theory'' for such an apparently simple notion results from the existence of many definitions of the dimension that are equivalent only in the most regular cases (see Dimension of an algebraic variety). A large part of dimension theory consists in studying the conditions under which several dimensions are equal, and many important classes of commutative rings may be defined as the rings such that two dimensions are equal; for example, a regular ring is a commutative ring such that the homological dimension is equal to the Krull dimension. The theory is simpler for commutative rings that are finitely generated algebras over a field, which are also quotient rings of polynomial rings in a finite number of indeterminates over a field. In this case, which is the algebraic counterpart of the case of affine algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert–Poincaré Series
In mathematics, and in particular in the field of algebra, a Hilbert–Poincaré series (also known under the name Hilbert series), named after David Hilbert and Henri Poincaré, is an adaptation of the notion of dimension to the context of graded algebraic structures (where the dimension of the entire structure is often infinite). It is a formal power series in one indeterminate, say t, where the coefficient of t^n gives the dimension (or rank) of the sub-structure of elements homogeneous of degree n. It is closely related to the Hilbert polynomial in cases when the latter exists; however, the Hilbert–Poincaré series describes the rank in every degree, while the Hilbert polynomial describes it only in all but finitely many degrees, and therefore provides less information. In particular the Hilbert–Poincaré series cannot be deduced from the Hilbert polynomial even if the latter exists. In good cases, the Hilbert–Poincaré series can be expressed as a rational function of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Krull Dimension
In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules. The Krull dimension was introduced to provide an algebraic definition of the dimension of an algebraic variety: the dimension of the affine variety defined by an ideal ''I'' in a polynomial ring ''R'' is the Krull dimension of ''R''/''I''. A field ''k'' has Krull dimension 0; more generally, ''k'' 'x''1, ..., ''x''''n''has Krull dimension ''n''. A principal ideal domain that is not a field has Krull dimension 1. A local ring has Krull dimension 0 if and only if every element of its maximal ideal is nilpotent. There are several other ways that have been used to define the dimension of a ring. Most of them coinci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Closure
In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a''''j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' is a root of a monic polynomial over ''A''. The set of elements of ''B'' that are integral over ''A'' is called the integral closure of ''A'' in ''B''. It is a subring of ''B'' containing ''A''. If every element of ''B'' is integral over ''A'', then we say that ''B'' is integral over ''A'', or equivalently ''B'' is an integral extension of ''A''. If ''A'', ''B'' are fields, then the notions of "integral over" and of an "integral extension" are precisely " algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial). The case of greatest interest in number theory is that of complex numbers integral over Z (e.g., \sqrt or 1+i); in this context, the integral elements are usual ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Degree Of A Projective Variety
In mathematics, the degree of an affine or projective variety of dimension is the number of intersection points of the variety with hyperplanes in general position.In the affine case, the general-position hypothesis implies that there is no intersection point at infinity. For an algebraic set, the intersection points must be counted with their intersection multiplicity, because of the possibility of multiple components. For (irreducible) varieties, if one takes into account the multiplicities and, in the affine case, the points at infinity, the hypothesis of ''general position'' may be replaced by the much weaker condition that the intersection of the variety has the dimension zero (that is, consists of a finite number of points). This is a generalization of Bézout's theorem (For a proof, see ). The degree is not an intrinsic property of the variety, as it depends on a specific embedding of the variety in an affine or projective space. The degree of a hypersurface is equal to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rees Algebra
In commutative algebra, the Rees algebra of an ideal ''I'' in a commutative ring ''R'' is defined to be R t\bigoplus_^ I^n t^n\subseteq R The extended Rees algebra of ''I'' (which some authors refer to as the Rees algebra of ''I'') is defined asR t,t^\bigoplus_^I^nt^n\subseteq R ,t^This construction has special interest in algebraic geometry since the projective scheme defined by the Rees algebra of an ideal in a ring is the blowing-up of the spectrum of the ring along the subscheme defined by the ideal.Eisenbud-Harris, ''The geometry of schemes''. Springer-Verlag, 197, 2000 Properties * Assume ''R'' is Noetherian; then ''R t' is also Noetherian. The Krull dimension of the Rees algebra is \dim R t\dim R+1 if ''I'' is not contained in any prime ideal ''P'' with \dim(R/P)=\dim R; otherwise \dim R t\dim R. The Krull dimension of the extended Rees algebra is \dim R t, t^\dim R+1. * If J\subseteq I are ideals in a Noetherian ring ''R'', then the ring extension R tsubseteq R t/math> i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Valuation Theory
In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field. Definition One starts with the following objects: *a field and its multiplicative group ''K''×, *an abelian totally ordered group . The ordering and group law on are extended to the set by the rules * for all ∈ , * for all ∈ . Then a valuation of is any map : which satisfies the following properties for all ''a'', ''b'' in ''K'': * if and only if , *, *, with equality if ''v''(''a'') ≠ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]