In
mathematics, and in particular in the field of
algebra
Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
, a Hilbert–Poincaré series (also known under the name
Hilbert series
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homog ...
), named after
David Hilbert and
Henri Poincaré
Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
, is an adaptation of the notion of
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
to the context of
graded algebraic structures (where the dimension of the entire structure is often infinite). It is a
formal power series in one indeterminate, say
, where the coefficient of
gives the dimension (or rank) of the sub-structure of elements homogeneous of degree
. It is closely related to the
Hilbert polynomial
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homoge ...
in cases when the latter exists; however, the Hilbert–Poincaré series describes the rank in every degree, while the Hilbert polynomial describes it only in all but finitely many degrees, and therefore provides less information. In particular the Hilbert–Poincaré series cannot be deduced from the Hilbert polynomial even if the latter exists. In good cases, the Hilbert–Poincaré series can be expressed as a
rational function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
of its argument
.
Definition
Let ''K'' be a field, and let
be an
-
graded vector space
In mathematics, a graded vector space is a vector space that has the extra structure of a '' grading'' or a ''gradation'', which is a decomposition of the vector space into a direct sum of vector subspaces.
Integer gradation
Let \mathbb be ...
over ''K'', where each subspace
of vectors of degree ''i'' is finite-dimensional. Then the Hilbert–Poincaré series of ''V'' is the
formal power series
:
A similar definition can be given for an
-graded ''R''-module over any
commutative ring ''R'' in which each submodule of elements homogeneous of a fixed degree ''n'' is
free
Free may refer to:
Concept
* Freedom, having the ability to do something, without having to obey anyone/anything
* Freethought, a position that beliefs should be formed only on the basis of logic, reason, and empiricism
* Emancipate, to procur ...
of finite rank; it suffices to replace the dimension by the rank. Often the graded vector space or module of which the Hilbert–Poincaré series is considered has additional structure, for instance, that of a ring, but the Hilbert–Poincaré series is independent of the multiplicative or other structure.
Example: Since there are
monomials of degree ''k'' in variables
(by induction, say), one can deduce that the sum of the Hilbert–Poincaré series of