HOME
*





Limitation Of Size
In the philosophy of mathematics, specifically the philosophical foundations of set theory, limitation of size is a concept developed by Philip Jourdain and/or Georg Cantor to avoid Cantor's paradox. It identifies certain "inconsistent multiplicities", in Cantor's terminology, that cannot be sets because they are "too large". In modern terminology these are called proper classes. Use The axiom of limitation of size is an axiom in some versions of von Neumann–Bernays–Gödel set theory In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a colle ... or Morse–Kelley set theory. This axiom says that any class that is not "too large" is a set, and a set cannot be "too large". "Too large" is defined as being large enough that the class of all sets can be mapped one-to-one into it. References * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philosophy Of Mathematics
The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's lives. The logical and structural nature of mathematics itself makes this study both broad and unique among its philosophical counterparts. The philosophy of mathematics has two major themes: mathematical realism and mathematical anti-realism. History The origin of mathematics is subject to arguments and disagreements. Whether the birth of mathematics was a random happening or induced by necessity during the development of other subjects, like physics, is still a matter of prolific debates. Many thinkers have contributed their ideas concerning the nature of mathematics. Today, some philosophers of mathematics aim to give accounts of this form of inquiry and its products as they stand, while others emphasize a role for themselves that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Philip Jourdain
Philip Edward Bertrand Jourdain (16 October 1879 – 1 October 1919) was a British logician and follower of Bertrand Russell. Background He was born in Ashbourne in Derbyshire* one of a large family belonging to Emily Clay and his father Francis Jourdain (who was the vicar at Ashbourne). His sister Eleanor Jourdain was an English academic and author. Another sister, Margaret (1876–1951), was an authority on the history of fine English home-furnishings, and the life-long companion of the novelist Ivy Compton-Burnett. Mathematics and logic Jourdain was partly disabled by Friedreich's ataxia. He corresponded with Georg Cantor and Gottlob Frege, and took a close interest in the paradoxes related to Russell's paradox, formulating the card paradox version of the liar paradox.History and Root of the Principle of Conservation of Energy* 1915: Ernst MacThe Science of Mechanics* 1915: Georg Cantorbr>Contributions to the Foundation of the Theory of Transfinite Numbers References * Ivor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between the members of two sets, defined infinite and well-ordered sets, and proved that the real numbers are more numerous than the natural numbers. In fact, Cantor's method of proof of this theorem implies the existence of an infinity of infinities. He defined the cardinal and ordinal numbers and their arithmetic. Cantor's work is of great philosophical interest, a fact he was well aware of. Originally, Cantor's theory of transfinite numbers was regarded as counter-intuitive – even shocking. This caused it to encounter resistance from mathematical contemporaries such as Leopold Kronecker and Henri Poincaré and later from Hermann Weyl and L. E. J. Brouwer, while Ludwig Wittgenstein raised ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cantor's Paradox
In set theory, Cantor's paradox states that there is no set of all cardinalities. This is derived from the theorem that there is no greatest cardinal number. In informal terms, the paradox is that the collection of all possible "infinite sizes" is not only infinite, but so infinitely large that its own infinite size cannot be any of the infinite sizes in the collection. The difficulty is handled in axiomatic set theory by declaring that this collection is not a set but a proper class; in von Neumann–Bernays–Gödel set theory it follows from this and the axiom of limitation of size that this proper class must be in bijection with the class of all sets. Thus, not only are there infinitely many infinities, but this infinity is larger than any of the infinities it enumerates. This paradox is named for Georg Cantor, who is often credited with first identifying it in 1899 (or between 1895 and 1897). Like a number of "paradoxes" it is not actually contradictory but merely indicative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class (set Theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid Russell's paradox (see ). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems. In Quine's set-theoretical writing, the phrase "ultimate class" is often used in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Of Limitation Of Size
In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes.; English translation: . It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class.. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of '' V'', the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than ''V''—that is, there is no function mapping it onto ''V''. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto ''V''. Von Neumann's axiom implies the axioms of replacement, separation, union, and global choice. It is equi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Von Neumann–Bernays–Gödel Set Theory
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not. A key theorem of NBG is the class existence theorem, which states that for every formula whose quantifiers range only over sets, there is a class consisting of the sets satisfying the formula. This class is built by mirroring the step-by-step construction of the formula with classes. Since all set-theoretic formulas are constructed from two kinds of atomic formulas (membership and equality) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Morse–Kelley Set Theory
In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML. Morse–Kelley set theory is named after mathematicians John L. Kelley and Anthony Morse and was first set out by and later in an appendix to Kelley's textbook ''General Topology'' (1955), a graduate level introduction to topology. Kelley said the system in his book was a variant of the systems due to Thoralf Skolem and Morse. Morse's own versi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philosophy Of Mathematics
The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's lives. The logical and structural nature of mathematics itself makes this study both broad and unique among its philosophical counterparts. The philosophy of mathematics has two major themes: mathematical realism and mathematical anti-realism. History The origin of mathematics is subject to arguments and disagreements. Whether the birth of mathematics was a random happening or induced by necessity during the development of other subjects, like physics, is still a matter of prolific debates. Many thinkers have contributed their ideas concerning the nature of mathematics. Today, some philosophers of mathematics aim to give accounts of this form of inquiry and its products as they stand, while others emphasize a role for themselves that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Mathematics
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars. The earliest mathematical texts available are from Mesopotamia and Egypt – '' Plimpton 322'' ( Babylonian c. 2000 – 1900 BC), the ''Rhind Mathematical Papyrus'' ( Egyptian c. 1800 BC) and the '' Moscow Mathematical Papyrus'' (Egyptian c. 1890 BC). All of these texts mention the so-called Pythagorean triples, so, by inference, the Pythagorean theorem seems to be the most anci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]