HOME
*





Jacobian Curve
In mathematics, the Jacobi curve is a representation of an elliptic curve different from the usual one defined by the Weierstrass equation. Sometimes it is used in cryptography instead of the Weierstrass form because it can provide a defence against simple and differential power analysis style (SPA) attacks; it is possible, indeed, to use the general addition formula also for doubling a point on an elliptic curve of this form: in this way the two operations become indistinguishable from some side-channel information. The Jacobi curve also offers faster arithmetic compared to the Weierstrass curve. The Jacobi curve can be of two types: the Jacobi intersection, that is given by an intersection of two surfaces, and the Jacobi quartic. Elliptic Curves: Basics Given an elliptic curve, it is possible to do some "operations" between its points: for example one can add two points ''P'' and ''Q'' obtaining the point ''P'' + ''Q'' that belongs to the curve ; given a point ''P'' on the ell ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Map (mathematics)
In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term ''transformation'' can be used interchangeably, but ''transformation'' often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory. Maps as functions In many branches of mathematics, the term ''map'' is used to mean a function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a " continuous function" in topology, a "linear transformation" in linear algebra, etc. Some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nigel Smart (Cryptographer)
Nigel Smart is a professor at COSIC at the Katholieke Universiteit Leuven. He is a cryptographer with expertise in the theory of cryptography and its application in practice. Education Smart received a BSc degree in mathematics from the University of Reading in 1989. He then obtained his PhD degree from the University of Kent at Canterbury in 1992; his thesis was titled ''The Computer Solutions of Diophantine Equations''. Career Smart proceeded to work as a research fellow at the University of Kent, the Erasmus University Rotterdam, and Cardiff University until 1995. From 1995 to 1997, he was a lecturer in mathematics at the University of Kent, and then spent three years in industry at Hewlett-Packard from 1997 to 2000. From 2000 to 2017 he was at the University of Bristol, where he founded the cryptology research group. From 2018 he has been based in the COSIC group at the Katholieke Universiteit Leuven. Smart held a Royal Society Wolfson Merit Award (2008–2013), and two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Table Of Costs Of Operations In Elliptic Curves
Elliptic curve cryptography is a popular form of public key encryption that is based on the mathematical theory of elliptic curves. Points on an elliptic curve can be added and form a group under this addition operation. This article describes the computational costs for this group addition and certain related operations that are used in elliptic curve cryptography algorithms. Abbreviations for the operations The next section presents a table of all the time-costs of some of the possible operations in elliptic curves. The columns of the table are labelled by various computational operations. The rows of the table are for different models of elliptic curves. These are the operations considered : DBL - Doubling ADD - Addition mADD - Mixed addition: addition of an input that has been scaled to have ''Z''-coordinate 1. mDBL - Mixed doubling: doubling of an input that has been scaled to have ''Z'' coordinate 1. TPL - Tripling. DBL+ADD - Combined double and add step To see how addin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Additive Inverse
In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opposite number) of a positive number is negative, and the additive inverse of a negative number is positive. Zero is the additive inverse of itself. The additive inverse of is denoted by unary minus: (see also below). For example, the additive inverse of 7 is −7, because , and the additive inverse of −0.3 is 0.3, because . Similarly, the additive inverse of is which can be simplified to . The additive inverse of is , because . The additive inverse is defined as its inverse element under the binary operation of addition (see also below), which allows a broad generalization to mathematical objects other than numbers. As for any inverse operation, double additive inverse has no net effect: . Common examples For a number (and m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


System Of Equations
In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single equations, namely as a: * System of linear equations, * System of nonlinear equations, * System of bilinear equations, * System of polynomial equations, * System of differential equations, or a * System of difference equations See also * Simultaneous equations model, a statistical model in the form of simultaneous linear equations * Elementary algebra Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values). This use of variables entai ..., for elementary methods {{set index article Equations Broad-concept articles de:Gleichung#Gleichungssysteme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coordinate System
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the ''x''-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and ''vice versa''; this is the basis of analytic geometry. Common coordinate systems Number line The simplest example of a coordinate system is the identification of points on a line with real numbers using the ''number line''. In this system, an arbitrary point ''O'' (the ''origin'') is chosen on a given line. The coordinate of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Point Of An Algebraic Variety
In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth. Definition A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in differential calculus, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is the term of degree one of the Taylor expansion. Thus, if this term is zero, the tangent may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Surface (mathematics)
In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line. There are several more precise definitions, depending on the context and the mathematical tools that are used for the study. The simplest mathematical surfaces are planes and spheres in the Euclidean 3-space. The exact definition of a surface may depend on the context. Typically, in algebraic geometry, a surface may cross itself (and may have other singularities), while, in topology and differential geometry, it may not. A surface is a topological space of dimension two; this means that a moving point on a surface may move in two directions (it has two degrees of freedom). In other words, around almost every point, there is a ''coordinate patch'' on which a two-dimensional coordinate system is defined. For example, the surface of the Earth resembles (ideally) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simultaneous Equations
In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single equations, namely as a: * System of linear equations, * System of nonlinear equations, * System of bilinear equations, * System of polynomial equations, * System of differential equations, or a * System of difference equations See also * Simultaneous equations model, a statistical model in the form of simultaneous linear equations * Elementary algebra Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values). This use of variables entai ..., for elementary methods {{set index article Equations Broad-concept articles de:Gleichung#Gleichungssysteme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quadric
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension ''D'') in a -dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in ''D'' + 1 variables; for example, in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a ''degenerate quadric'' or a ''reducible quadric''. In coordinates , the general quadric is thus defined by the algebraic equationSilvio LevQuadricsin "Geometry Formulas and Facts", excerpted from 30th Edition of ''CRC Standard Mathematical Tables and Formulas'', CRC Press, from The Geometry Center at University of Minnesota : \sum_^ x_i Q_ x_j + \sum_^ P_i x_i + R = 0 which may be compactly written in vector and matrix notation as: : x Q x^\mathrm + P x^\mathrm + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]