HOME
*





Table Of Costs Of Operations In Elliptic Curves
Elliptic curve cryptography is a popular form of public key encryption that is based on the mathematical theory of elliptic curves. Points on an elliptic curve can be added and form a group under this addition operation. This article describes the computational costs for this group addition and certain related operations that are used in elliptic curve cryptography algorithms. Abbreviations for the operations The next section presents a table of all the time-costs of some of the possible operations in elliptic curves. The columns of the table are labelled by various computational operations. The rows of the table are for different models of elliptic curves. These are the operations considered : DBL - Doubling ADD - Addition mADD - Mixed addition: addition of an input that has been scaled to have ''Z''-coordinate 1. mDBL - Mixed doubling: doubling of an input that has been scaled to have ''Z'' coordinate 1. TPL - Tripling. DBL+ADD - Combined double and add step To see how addin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Curve Cryptography
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.Commercial National Security Algorithm Suite and Quantum Computing FAQ
U.S. National Security Agency, January 2016.
Elliptic curves are applicable for , s,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twisted Edward Curves
In algebraic geometry, the twisted Edwards curves are plane models of elliptic curves, a generalisation of Edwards curves introduced by Daniel J. Bernstein, Bernstein, Birkner, Joye, Tanja Lange, Lange and Peters in 2008. The curve set is named after mathematician Harold Edwards (mathematician), Harold M. Edwards. Elliptic curves are important in public key cryptography and twisted Edwards curves are at the heart of an electronic signature scheme called EdDSA that offers high performance while avoiding security problems that have surfaced in other digital signature schemes. Definition Each twists of curves, twisted Edwards curve is a Twists of curves, twist of an Edwards curve. A twisted Edwards curve E_ over a field (mathematics), field \mathbb with \operatorname(\mathbb) \neq 2 is an wikt:affine, affine plane curve defined by the equation: : E_: a x^2+y^2= 1+dx^2y^2 where a, d are distinct non-zero elements of \mathbb. The special case a = 1 is ''untwisted'', because the curve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Number Theory
In mathematics and computer science, computational number theory, also known as algorithmic number theory, is the study of computational methods for investigating and solving problems in number theory and arithmetic geometry, including algorithms for primality testing and integer factorization, finding solutions to diophantine equations, and explicit methods in arithmetic geometry. Computational number theory has applications to cryptography, including RSA, elliptic curve cryptography and post-quantum cryptography, and is used to investigate conjectures and open problems in number theory, including the Riemann hypothesis, the Birch and Swinnerton-Dyer conjecture, the ABC conjecture, the modularity conjecture, the Sato-Tate conjecture, and explicit aspects of the Langlands program. Software packages * Magma computer algebra system * SageMath * Number Theory Library * PARI/GP * Fast Library for Number Theory Further reading * * * * * * * * * * * References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finite Fields
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponentiation By Squaring
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product of multiplying bases: b^n = \underbrace_. The exponent is usually shown as a superscript to the right of the base. In that case, is called "''b'' raised to the ''n''th power", "''b'' (raised) to the power of ''n''", "the ''n''th power of ''b''", "''b'' to the ''n''th power", or most briefly as "''b'' to the ''n''th". Starting from the basic fact stated above that, for any positive integer n, b^n is n occurrences of b all multiplied by each other, several other properties of exponentiation directly follow. In particular: \begin b^ & = \underbrace_ \\ ex& = \underbrace_ \times \underbrace_ \\ ex& = b^n \times b^m \end In other words, when multiplying a base raised to one exp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lenstra Elliptic Curve Factorization
The Lenstra elliptic-curve factorization or the elliptic-curve factorization method (ECM) is a fast, sub-exponential running time, algorithm for integer factorization, which employs elliptic curves. For general-purpose factoring, ECM is the third-fastest known factoring method. The second-fastest is the multiple polynomial quadratic sieve, and the fastest is the general number field sieve. The Lenstra elliptic-curve factorization is named after Hendrik Lenstra. Practically speaking, ECM is considered a special-purpose factoring algorithm, as it is most suitable for finding small factors. , it is still the best algorithm for divisors not exceeding 50 to 60 digits, as its running time is dominated by the size of the smallest factor ''p'' rather than by the size of the number ''n'' to be factored. Frequently, ECM is used to remove small factors from a very large integer with many factors; if the remaining integer is still composite, then it has only large factors and is factore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Curve Cryptography
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.Commercial National Security Algorithm Suite and Quantum Computing FAQ
U.S. National Security Agency, January 2016.
Elliptic curves are applicable for , s,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Montgomery Curve
In mathematics the Montgomery curve is a form of elliptic curve introduced by Peter L. Montgomery in 1987, different from the usual Weierstrass form. It is used for certain computations, and in particular in different cryptography applications. Definition A Montgomery curve over a field is defined by the equation :M_: By^2 = x^3 + Ax^2 + x for certain and with . Generally this curve is considered over a finite field ''K'' (for example, over a finite field of elements, ) with characteristic different from 2 and with and , but they are also considered over the rationals with the same restrictions for and . Montgomery arithmetic It is possible to do some "operations" between the points of an elliptic curve: "adding" two points P, Q consists of finding a third one R such that R=P+Q; "doubling" a point consists of computing =P+P (For more information about operations see The group law) and below. A point P=(x,y) on the elliptic curve in the Montgomery form By^2 = x^3 + A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edwards Curve
In mathematics, the Edwards curves are a family of elliptic curves studied by Harold Edwards in 2007. The concept of elliptic curves over finite fields is widely used in elliptic curve cryptography. Applications of Edwards curves to cryptography were developed by Daniel J. Bernstein and Tanja Lange: they pointed out several advantages of the Edwards form in comparison to the more well known Weierstrass form. Definition The equation of an Edwards curve over a field ''K'' which does not have characteristic 2 is: : x^2 + y^2 = 1 + d x^2 y^2 \, for some scalar d\in K\setminus\. Also the following form with parameters ''c'' and ''d'' is called an Edwards curve: : x^2 + y^2 = c^2(1 + dx^2 y^2) \, where ''c'', ''d'' ∈ ''K'' with ''cd''(1 − ''c''4·''d'') ≠ 0. Every Edwards curve is birationally equivalent to an elliptic curve in Montgomery form, and thus admits an algebraic group law once one chooses a point to serve as a neutral el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edwards Curves
In mathematics, the Edwards curves are a family of elliptic curves studied by Harold Edwards in 2007. The concept of elliptic curves over finite fields is widely used in elliptic curve cryptography. Applications of Edwards curves to cryptography were developed by Daniel J. Bernstein and Tanja Lange: they pointed out several advantages of the Edwards form in comparison to the more well known Weierstrass form. Definition The equation of an Edwards curve over a field ''K'' which does not have characteristic 2 is: : x^2 + y^2 = 1 + d x^2 y^2 \, for some scalar d\in K\setminus\. Also the following form with parameters ''c'' and ''d'' is called an Edwards curve: : x^2 + y^2 = c^2(1 + dx^2 y^2) \, where ''c'', ''d'' ∈ ''K'' with ''cd''(1 − ''c''4·''d'') ≠ 0. Every Edwards curve is birationally equivalent to an elliptic curve in Montgomery form, and thus admits an algebraic group law once one chooses a point to serve as a neutral ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Doubling-oriented Doche–Icart–Kohel Curve
In mathematics, the doubling-oriented Doche–Icart–Kohel curve is a form in which an elliptic curve can be written. It is a special case of Weierstrass form and it is also important in elliptic curve cryptography, elliptic-curve cryptography because the doubling speeds up considerably (computing as composition of 2-isogeny and its dual abelian variety, dual). It has been introduced by Christophe Doche, Thomas Icart, and David R. Kohel in ''Efficient Scalar Multiplication by Isogeny Decompositions.''Christophe Doche, Thomas Icart, and David R. Kohel, ''Efficient Scalar Multiplication by Isogeny Decompositions'' Definition Let K be a field (mathematics), field and let a\in K. Then, the Doubling-oriented Doche–Icart–Kohel curve with parameter ''a'' in affine space, affine coordinates is represented by: y^2=x^3+ax^2+16ax Equivalently, in projective space, projective coordinates: ZY^2=X^3+aZX^2+16aXZ^2, with x=\frac and y=\frac . Notice that, since this curve is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public Key
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]