Integral Transform
   HOME
*





Integral Transform
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function, integral kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hankel Transform
In mathematics, the Hankel transform expresses any given function ''f''(''r'') as the weighted sum of an infinite number of Bessel functions of the first kind . The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor ''k'' along the ''r'' axis. The necessary coefficient of each Bessel function in the sum, as a function of the scaling factor ''k'' constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval. Definition The Hankel transform of order \nu of a function ''f''(''r'') is given by : F_\nu(k) = \int_0^\infty f(r) J_\nu(kr) \,r\,\mathrmr, where J_\nu is the Bessel function of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fourier Cosine Transform
In mathematics, the Fourier sine and cosine transforms are forms of the Fourier transform that do not use complex numbers or require negative frequency. They are the forms originally used by Joseph Fourier and are still preferred in some applications, such as signal processing or statistics. Definition The Fourier sine transform of , sometimes denoted by either ^s or _s (f) , is ^s(\xi) = \int_^\infty f(t)\sin(2\pi \xi t) \,dt. If means time, then is frequency in cycles per unit time, but in the abstract, they can be any pair of variables which are dual to each other. This transform is necessarily an odd function of frequency, i.e. for all : ^s(-\xi) = - ^s(\xi). The numerical factors in the Fourier transforms are defined uniquely only by their product. Here, in order that the Fourier inversion formula not have any numerical factor, the factor of 2 appears because the sine function has norm of \tfrac. The Fourier cosine transform of , sometimes denoted by either ^c o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fourier Sine Transform
In mathematics, the Fourier sine and cosine transforms are forms of the Fourier transform that do not use complex numbers or require negative frequency. They are the forms originally used by Joseph Fourier and are still preferred in some applications, such as signal processing or statistics. Definition The Fourier sine transform of , sometimes denoted by either ^s or _s (f) , is ^s(\xi) = \int_^\infty f(t)\sin(2\pi \xi t) \,dt. If means time, then is frequency in cycles per unit time, but in the abstract, they can be any pair of variables which are dual to each other. This transform is necessarily an odd function of frequency, i.e. for all : ^s(-\xi) = - ^s(\xi). The numerical factors in the Fourier transforms are defined uniquely only by their product. Here, in order that the Fourier inversion formula not have any numerical factor, the factor of 2 appears because the sine function has norm of \tfrac. The Fourier cosine transform of , sometimes denoted by either ^c o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abel Transform
In mathematics, the Abel transform,N. H. Abel, Journal für die reine und angewandte Mathematik, 1, pp. 153–157 (1826). named for Niels Henrik Abel, is an integral transform often used in the analysis of spherically symmetric or axially symmetric functions. The Abel transform of a function ''f''(''r'') is given by : F(y) = 2 \int_y^\infty \frac \,dr. Assuming that ''f''(''r'') drops to zero more quickly than 1/''r'', the inverse Abel transform is given by : f(r) = -\frac \int_r^\infty \frac \,\frac. In image analysis, the forward Abel transform is used to project an optically thin, axially symmetric emission function onto a plane, and the inverse Abel transform is used to calculate the emission function given a projection (i.e. a scan or a photograph) of that emission function. In absorption spectroscopy of cylindrical flames or plumes, the forward Abel transform is the integrated absorbance along a ray with closest distance ''y'' from the center of the flame, while the inve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Propagator
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called ''(causal) Green's functions'' (called "''causal''" to distinguish it from the elliptic Laplacian Green's function). Non-relativistic propagators In non-relativistic quantum mechanics, the propagator gives the probability amplitude for a particle to travel from one spatial point (x') at one time (t') to another spatial point (x) at a later time (t). Consider a system with Hamiltonian . The Green's function (fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Path Integral Formulation
The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude. This formulation has proven crucial to the subsequent development of theoretical physics, because manifest Lorentz covariance (time and space components of quantities enter equations in the same way) is easier to achieve than in the operator formalism of canonical quantization. Unlike previous methods, the path integral allows one to easily change coordinates between very different canonical descriptions of the same quantum system. Another advantage is that it is in practice easier to guess the correct form of the Lagrangian of a theory, which naturally enters the path integrals (for interactions of a certain type, these are ''coordinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Damped Sinusoid
Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples include viscous drag (a liquid's viscosity can hinder an oscillatory system, causing it to slow down; see viscous damping) in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes (ex. Suspension (mechanics)). Not to be confused with friction, which is a dissipative force acting on a system. Friction can cause or be a factor of damping. The damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. Many systems exhibit oscillatory behavior when they are disturbed from their position of static ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Equation (calculus)
In mathematics, the characteristic equation (or auxiliary equation) is an algebraic equation of degree upon which depends the solution of a given th- order differential equation or difference equation. The characteristic equation can only be formed when the differential or difference equation is linear and homogeneous, and has constant coefficients. Such a differential equation, with as the dependent variable, superscript denoting ''n''th-derivative, and as constants, :a_y^ + a_y^ + \cdots + a_y' + a_y = 0, will have a characteristic equation of the form :a_r^ + a_r^ + \cdots + a_r + a_ = 0 whose solutions are the roots from which the general solution can be formed. Analogously, a linear difference equation of the form :y_=b_1y_ + \cdots + b_ny_ has characteristic equation :r^n - b_1r^ - \cdots - b_n =0, discussed in more detail at Linear recurrence with constant coefficients#Solution to homogeneous case. The characteristic roots (roots of the characteristic equation) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Laplace Transform
In mathematics, the inverse Laplace transform of a function ''F''(''s'') is the piecewise-continuous and exponentially-restricted real function ''f''(''t'') which has the property: :\mathcal\(s) = \mathcal\(s) = F(s), where \mathcal denotes the Laplace transform. It can be proven that, if a function ''F''(''s'') has the inverse Laplace transform ''f''(''t''), then ''f''(''t'') is uniquely determined (considering functions which differ from each other only on a point set having Lebesgue measure zero as the same). This result was first proven by Mathias Lerch in 1903 and is known as Lerch's theorem. The Laplace transform and the inverse Laplace transform together have a number of properties that make them useful for analysing linear dynamical systems. Mellin's inverse formula An integral formula for the inverse Laplace transform, called the ''Mellin's inverse formula'', the '' Bromwich integral'', or the '' Fourier–Mellin integral'', is given by the line integral: :f(t) = \mathca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalues
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]