Ishimori Equation
The Ishimori equation is a partial differential equation proposed by the Japanese mathematician . Its interest is as the first example of a nonlinear spin-one field model in the plane that is integrable . Equation The Ishimori equation has the form : \frac = \mathbf\wedge \left(\frac + \frac\right)+ \frac\frac + \frac\frac,\qquad (1a) : \frac-\alpha^2 \frac=-2\alpha^2 \mathbf\cdot\left(\frac\wedge \frac\right).\qquad (1b) Lax representation The Lax representation :L_t=AL-LA\qquad (2) of the equation is given by :L=\Sigma \partial_x+\alpha I\partial_y,\qquad (3a) :A= -2i\Sigma\partial_x^2+(-i\Sigma_x-i\alpha\Sigma_y\Sigma+u_yI-\alpha^3u_x\Sigma)\partial_x.\qquad (3b) Here :\Sigma=\sum_^3S_j\sigma_j,\qquad (4) the \sigma_i are the Pauli matrices and I is the identity matrix. Reductions The Ishimori equation admits an important reduction: in 1+1 dimensions it reduces to the continuous classical Heisenberg ferromagnet equation (CCHFE). The CCHFE is integrable. Equiva ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History One of the earliest known mathematicians were Thales of Miletus (c. 624–c.546 BC); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. The number of known mathematicians grew when Pythagoras of Samos (c. 582–c. 507 BC) established the Pythagorean School, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman mathematician recorded by history was Hypati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integrable System
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, such that its behaviour has far fewer degrees of freedom than the dimensionality of its phase space; that is, its evolution is restricted to a submanifold within its phase space. Three features are often referred to as characterizing integrable systems: * the existence of a ''maximal'' set of conserved quantities (the usual defining property of complete integrability) * the existence of algebraic invariants, having a basis in algebraic geometry (a property known sometimes as algebraic integrability) * the explicit determination of solutions in an explicit functional form (not an intrinsic property, but something often referred to as solvability) Integrable systems may be seen as very different in qualitative character from mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lax Representation
In mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that satisfy a corresponding differential equation, called the ''Lax equation''. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems. Definition A Lax pair is a pair of matrices or operators L(t), P(t) dependent on time and acting on a fixed Hilbert space, and satisfying Lax's equation: :\frac= ,L/math> where ,LPL-LP is the commutator. Often, as in the example below, P depends on L in a prescribed way, so this is a nonlinear equation for L as a function of t. Isospectral property It can then be shown that the eigenvalues and more generally the spectrum of ''L'' are independent of ''t''. The matrices/operators ''L'' are said to be ''isospectral'' as t varies. The core observation is that the matrices L(t) are all similar by virtue of :L(t)=U(t,s) L(s) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pauli Matrices
In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () when used in connection with isospin symmetries. \begin \sigma_1 = \sigma_\mathrm &= \begin 0&1\\ 1&0 \end \\ \sigma_2 = \sigma_\mathrm &= \begin 0& -i \\ i&0 \end \\ \sigma_3 = \sigma_\mathrm &= \begin 1&0\\ 0&-1 \end \\ \end These matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation which takes into account the interaction of the spin of a particle with an external electromagnetic field. They also represent the interaction states of two polarization filters for horizontal/vertical polarization, 45 degree polarization (right/left), and circular polarization (right/left). Each Pauli matrix is Hermitian, and together with the iden ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heisenberg Model (classical)
The Classical Heisenberg model, developed by Werner Heisenberg, is the n = 3 case of the n-vector model, one of the models used in statistical physics to model ferromagnetism, and other phenomena. Definition It can be formulated as follows: take a d-dimensional lattice, and a set of spins of the unit length :\vec_i \in \mathbb^3, , \vec_i, =1\quad (1), each one placed on a lattice node. The model is defined through the following Hamiltonian: : \mathcal = -\sum_ \mathcal_ \vec_i \cdot \vec_j\quad (2) with : \mathcal_ = \begin J & \mboxi, j\mbox \\ 0 & \mbox\end a coupling between spins. Properties * The general mathematical formalism used to describe and solve the Heisenberg model and certain generalizations is developed in the article on the Potts model. * In the continuum limit the Heisenberg model (2) gives the following equation of motion :: \vec_=\vec\wedge \vec_. :This equation is called the continuous classical Heisenberg ferromagnet equation or shortly Heisenberg model ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonlinear Schrödinger Equation
In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spin Wave
A spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization. The energies of spin waves are typically only in keeping with typical Curie points at room temperature and below. Theory The simplest way of understanding spin waves is to consider the Hamiltonian \mathcal for the Heisenberg ferromagnet: :\mathcal = -\frac J \sum_ \mathbf_i \cdot \mathbf_j - g \mu_ \sum_i \mathbf \cdot \mathbf_i where is the exchange energy, the operators represent the spins at Bravais lattice points, is the Landé -factor, is the Bohr magneton and is the internal fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Landau–Lifshitz Model
In solid-state physics, the Landau–Lifshitz equation (LLE), named for Lev Landau and Evgeny Lifshitz, is a partial differential equation describing time evolution of magnetism in solids, depending on 1 time variable and 1, 2, or 3 space variables. Landau–Lifshitz equation The LLE describes an anisotropic magnet. The equation is described in as follows: It is an equation for a vector field S, in other words a function on R1+''n'' taking values in R3. The equation depends on a fixed symmetric 3 by 3 matrix ''J'', usually assumed to be diagonal; that is, J=\operatorname(J_, J_, J_). It is given by Hamilton's equation of motion for the Hamiltonian :H=\frac\int \left sum_i\left(\frac\right)^-J(\mathbf)\right, dx\qquad (1) (where ''J''(S) is the quadratic form of ''J'' applied to the vector S) which is : \frac = \mathbf\wedge \sum_i\frac + \mathbf\wedge J\mathbf.\qquad (2) In 1+1 dimensions this equation is : \frac = \mathbf\wedge \frac + \mathbf\wedge J\mathbf.\qquad (3) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Soliton
In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. (Dispersive effects are a property of certain systems where the speed of a wave depends on its frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. The soliton phenomenon was first described in 1834 by John Scott Russell (1808–1882) who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation". Definition A single, consensus definition of a soliton is difficult to find. ascribe three properties to solitons: # They are of permanent form; # They are localized within a region; # They can interact with other solitons, and emerge from the collision unchanged, e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vortex
In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil. Vortices are a major component of turbulent flow. The distribution of velocity, vorticity (the curl of the flow velocity), as well as the concept of circulation are used to characterise vortices. In most vortices, the fluid flow velocity is greatest next to its axis and decreases in inverse proportion to the distance from the axis. In the absence of external forces, viscous friction within the fluid tends to organise the flow into a collection of irrotational vortices, possibly superimposed to larger-scale flows, including larger-scale vortices. Once formed, vortices can move, stretch, twist, and interact in complex ways. A moving vortex carries s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |