Invariance Theorem
   HOME





Invariance Theorem
Invariance theorem may refer to: *Invariance of domain, a theorem in topology *A theorem pertaining to Kolmogorov complexity *A result in classical mechanics for adiabatic invariants *A theorem of algorithmic probability See also *Invariant (mathematics) In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objec ...
{{disambiguation, math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariance Of Domain
Invariance of domain is a theorem in topology about homeomorphic subsets of Euclidean space \R^n. It states: :If U is an open subset of \R^n and f : U \rarr \R^n is an injective continuous map, then V := f(U) is open in \R^n and f is a homeomorphism between U and V. The theorem and its proof are due to L. E. J. Brouwer, published in 1912. The proof uses tools of algebraic topology, notably the Brouwer fixed point theorem. Notes The conclusion of the theorem can equivalently be formulated as: "f is an open map". Normally, to check that f is a homeomorphism, one would have to verify that both f and its inverse function f^ are continuous; the theorem says that if the domain is an subset of \R^n and the image is also in \R^n, then continuity of f^ is automatic. Furthermore, the theorem says that if two subsets U and V of \R^n are homeomorphic, and U is open, then V must be open as well. (Note that V is open as a subset of \R^n, and not just in the subspace topology. Openn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kolmogorov Complexity
In algorithmic information theory (a subfield of computer science and mathematics), the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program (in a predetermined programming language) that produces the object as output. It is a measure of the computational resources needed to specify the object, and is also known as algorithmic complexity, Solomonoff–Kolmogorov–Chaitin complexity, program-size complexity, descriptive complexity, or algorithmic entropy. It is named after Andrey Kolmogorov, who first published on the subject in 1963 and is a generalization of classical information theory. The notion of Kolmogorov complexity can be used to state and prove impossibility results akin to Cantor's diagonal argument, Gödel's incompleteness theorem, and Turing's halting problem. In particular, no program ''P'' computing a lower bound for each text's Kolmogorov complexity can return a value essentially larger than ''P'''s own len ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adiabatic Invariants
A property of a physical system, such as the entropy of a gas, that stays approximately constant when changes occur slowly is called an adiabatic invariant. By this it is meant that if a system is varied between two end points, as the time for the variation between the end points is increased to infinity, the variation of an adiabatic invariant between the two end points goes to zero. In thermodynamics, an adiabatic process is a change that occurs without heat flow; it may be slow or fast. A reversible adiabatic process is an adiabatic process that occurs slowly compared to the time to reach equilibrium. In a reversible adiabatic process, the system is in equilibrium at all stages and the entropy is constant. In the 1st half of the 20th century the scientists that worked in quantum physics used the term "adiabatic" for reversible adiabatic processes and later for any gradually changing conditions which allow the system to adapt its configuration. The quantum mechanical definition i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithmic Probability
In algorithmic information theory, algorithmic probability, also known as Solomonoff probability, is a mathematical method of assigning a prior probability to a given observation. It was invented by Ray Solomonoff in the 1960s. It is used in inductive inference theory and analyses of algorithms. In his general theory of inductive inference, Solomonoff uses the method together with Bayes' rule to obtain probabilities of prediction for an algorithm's future outputs. In the mathematical formalism used, the observations have the form of finite binary strings viewed as outputs of Turing machines, and the universal prior is a probability distribution over the set of finite binary strings calculated from a probability distribution over programs (that is, inputs to a universal Turing machine). The prior is universal in the Turing-computability sense, i.e. no string has zero probability. It is not computable, but it can be approximated. Formally, the probability P is not a probabil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]