HOME
*



picture info

Intel Nehalem
Nehalem is the List of Intel codenames, codename for Intel's 45 nm process, 45 nm microarchitecture released in November 2008. It was used in the first-generation of the Intel Core Core i5, i5 and Intel Core i7, i7 processors, and succeeds the older Core (microarchitecture), Core microarchitecture used on Intel Core 2, Core 2 processors. The term "Nehalem" comes from the Nehalem River. Nehalem is built on the 45 nanometer, 45 nm process, is able to run at higher clock speeds, and is more energy-efficient than Penryn (microarchitecture), Penryn microprocessors. Hyper-threading is reintroduced, along with a reduction in L2 cache size, as well as an enlarged L3 cache that is shared among all cores. Nehalem is an architecture that differs radically from NetBurst (microarchitecture), Netburst, while retaining some of the latter's minor features. Nehalem later received a die-shrink to 32 nm process, 32 nm with Westmere (microarchitecture), Westmere, and was fully succeeded by "secon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




45 Nanometer
Per the International Technology Roadmap for Semiconductors, the 45 nm process is a MOSFET technology node referring to the average half-pitch of a memory cell manufactured at around the 2007–2008 time frame. Matsushita and Intel started mass-producing 45 nm chips in late 2007, and AMD started production of 45 nm chips in late 2008, while IBM, Infineon, Samsung, and Chartered Semiconductor have already completed a common 45 nm process platform. At the end of 2008, SMIC was the first China-based semiconductor company to move to 45 nm, having licensed the bulk 45 nm process from IBM. In 2008, TSMC moved on to a 40nm process. Many critical feature sizes are smaller than the wavelength of light used for lithography (i.e., 193 nm and 248 nm). A variety of techniques, such as larger lenses, are used to make sub-wavelength features. Double patterning has also been introduced to assist in shrinking distances between features, especially if dry lit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sandy Bridge
Sandy Bridge is the codename for Intel's 32 nm microarchitecture used in the second generation of the Intel Core processors (Core i7, i5, i3). The Sandy Bridge microarchitecture is the successor to Nehalem and Westmere microarchitecture. Intel demonstrated a Sandy Bridge processor in 2009, and released first products based on the architecture in January 2011 under the Core brand. Sandy Bridge is manufactured in the 32 nm process and has a soldered contact with the die and IHS (Integrated Heat Spreader), while Intel's subsequent generation Ivy Bridge uses a 22 nm die shrink and a TIM (Thermal Interface Material) between the die and the IHS. Technology Intel demonstrated a Sandy Bridge processor with A1 stepping at 2 GHz during the Intel Developer Forum in September 2009. Upgraded features from Nehalem include: CPU * Intel Turbo Boost 2.0 * 32 KB data + 32 KB instruction L1 cache and 256 KB L2 cache per core * Shared L3 cache which inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


32 Nm Process
The 32 nm node is the step following the 45 nm process in CMOS ( MOSFET) semiconductor device fabrication. "32- nanometre" refers to the average half-pitch (i.e., half the distance between identical features) of a memory cell at this technology level. Toshiba produced commercial 32GiB NAND flash memory chips with the 32nm process in 2009. Intel and AMD produced commercial microchips using the 32-nanometre process in the early 2010s. IBM and the Common Platform also developed a 32 nm high-κ metal gate process. Intel began selling its first 32 nm processors using the Westmere architecture on 7 January 2010. The 28-nanometre node was an intermediate half-node die shrink based on the 32-nanometre process. The 32 nm process was superseded by commercial 22 nm technology in 2012.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NetBurst (microarchitecture)
The NetBurst microarchitecture, called P68 inside Intel, was the successor to the P6 microarchitecture in the x86 family of central processing units (CPUs) made by Intel. The first CPU to use this architecture was the Willamette-core Pentium 4, released on November 20, 2000 and the first of the Pentium 4 CPUs; all subsequent Pentium 4 and Pentium D variants have also been based on NetBurst. In mid-2004, Intel released the ''Foster'' core, which was also based on NetBurst, thus switching the Xeon CPUs to the new architecture as well. Pentium 4-based Celeron CPUs also use the NetBurst architecture. NetBurst was replaced with the Core microarchitecture based on P6, released in July 2006. Technology The NetBurst microarchitecture includes features such as Hyper-threading, Hyper Pipelined Technology, Rapid Execution Engine, Execution Trace Cache, and replay system which all were introduced for the first time in this particular microarchitecture, and some never appeared again aft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyper-threading
Hyper-threading (officially called Hyper-Threading Technology or HT Technology and abbreviated as HTT or HT) is Intel's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations (doing multiple tasks at once) performed on x86 microprocessors. It was introduced on Xeon server processors in February 2002 and on Pentium 4 desktop processors in November 2002. Since then, Intel has included this technology in Itanium, Atom, and Core 'i' Series CPUs, among others. For each processor core that is physically present, the operating system addresses two virtual (logical) cores and shares the workload between them when possible. The main function of hyper-threading is to increase the number of independent instructions in the pipeline; it takes advantage of superscalar architecture, in which multiple instructions operate on separate data in parallel. With HTT, one physical core appears as two processors to the operating system, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nehalem River
The Nehalem River is a river on the Pacific coast of northwest Oregon in the United States, approximately long. It drains part of the Northern Oregon Coast Range northwest of Portland, originating on the east side of the mountains and flowing in a loop around the north end of the range near the mouth of the Columbia River. Its watershed of includes an important timber-producing region of Oregon that was the site of the Tillamook Burn. In its upper reaches it flows through a long narrow valley of small mountain communities but is unpopulated along most of its lower reaches inland from the coast. It rises in the northeast corner of Tillamook County, in the Tillamook State Forest. It initially flows northeast, across the northwest corner of Washington County and into western Columbia County, past Vernonia where it receives Rock Creek, it hooks to the northwest and west into Clatsop County, then flows southwest back into northern Tillamook County. It enters Nehalem Bay on the Pac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intel Core 2
Intel Core 2 is the processor family encompassing a range of Intel's consumer 64-bit x86-64 single-, dual-, and quad-core microprocessors based on the Core microarchitecture. The single- and dual-core models are single-die, whereas the quad-core models comprise two dies, each containing two cores, packaged in a multi-chip module. The Core 2 range was the last flagship range of Intel desktop processors to use a front-side bus. The introduction of Core 2 relegated the Pentium brand to the mid-range market, and reunified laptop and desktop CPU lines for marketing purposes under the same product name, which were formerly divided into the Pentium 4, Pentium D, and Pentium M brands. The ''Core 2'' processor line was introduced on July 27, 2006, comprising the ''Duo'' (dual-core) and ''Extreme'' (dual- or quad-core CPUs for enthusiasts), and in 2007, the ''Quad'' (quad-core) and ''Solo'' (single-core) sub-brands. Intel Core 2 processors with vPro technology (designed for businesses) i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel Core I7
The following is a list of Intel Core i7 brand microprocessors. Introduced in 2008, the Core i7 line of microprocessors are intended to be used by high-end users. Desktop processors Nehalem microarchitecture (1st generation) "Bloomfield" (45 nm) * All models support: MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, Enhanced Intel SpeedStep Technology (EIST), Intel 64, XD bit (an NX bit implementation), Intel VT-x, Hyper-threading, Turbo Boost, Smart Cache. * FSB has been replaced with QPI. * Transistors: 731 million * Die size: 263 mm * Steppings: C0, D0 "Lynnfield" (45 nm) * All models support: MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, Enhanced Intel SpeedStep Technology (EIST), Intel 64, XD bit (an NX bit implementation), TXT, Intel VT-x, Intel VT-d, Hyper-threading, Turbo Boost, Smart Cache. * Core i7-875K features an unlocked multiplier and does not support Intel TXT and Intel VT-d. * FSB has been replaced with DMI. *Moves the QPI link and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Core I5
The following is a list of Intel Core i5 brand microprocessors. Introduced in 2009, the Core i5 line of microprocessors are intended to be used by mainstream users. Desktop processors Nehalem microarchitecture (1st generation) "Lynnfield" (45 nm) * All models support: '' MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, Enhanced Intel SpeedStep Technology (EIST), Intel 64, XD bit (an NX bit implementation), Intel VT-x, Turbo Boost, Smart Cache.'' * FSB has been replaced with DMI. * Transistors: 774 million * Die size: 296 mm² * Stepping: B1 Westmere microarchitecture (1st generation) " Clarkdale" ( MCP, 32 nm dual-core) * All models support: '' MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, Enhanced Intel SpeedStep Technology (EIST), Intel 64, XD bit (an NX bit implementation), TXT, Intel VT-x, Intel VT-d, Hyper-threading, Turbo Boost, AES-NI, Smart Cache.'' * Core i5-655K, Core i5-661 does not support ''Intel TXT and Intel VT-d.'' * Core i5-655K fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel Core
Intel Core is a line of streamlined midrange consumer, workstation and enthusiast computer central processing units (CPUs) marketed by Intel Corporation. These processors displaced the existing mid- to high-end Pentium processors at the time of their introduction, moving the Pentium to the entry level. Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets. The lineup of Core processors includes the Intel Core i3, Intel Core i5, Intel Core i7, and Intel Core i9, along with the X-series of Intel Core CPUs. Outline Although Intel Core is a brand that promises no internal consistency or continuity, the processors within this family have been, for the most part, broadly similar. The first products receiving this designation were the Core Solo and Core Duo Yonah processors for mobile from the Pentium M design tree, fabricated at 65 nm and brought to market in January 2006. These are substantially diffe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microarchitecture
In computer engineering, microarchitecture, also called computer organization and sometimes abbreviated as µarch or uarch, is the way a given instruction set architecture (ISA) is implemented in a particular processor. A given ISA may be implemented with different microarchitectures; implementations may vary due to different goals of a given design or due to shifts in technology. Computer architecture is the combination of microarchitecture and instruction set architecture. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the instructions, execution model, processor registers, address and data formats among other things. The microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


45 Nm Process
Per the International Technology Roadmap for Semiconductors, the 45 nm process is a MOSFET technology node referring to the average half-pitch of a memory cell manufactured at around the 2007–2008 time frame. Matsushita and Intel started mass-producing 45 nm chips in late 2007, and AMD started production of 45 nm chips in late 2008, while IBM, Infineon, Samsung, and Chartered Semiconductor have already completed a common 45 nm process platform. At the end of 2008, SMIC was the first China-based semiconductor company to move to 45 nm, having licensed the bulk 45 nm process from IBM. In 2008, TSMC moved on to a 40nm process. Many critical feature sizes are smaller than the wavelength of light used for lithography (i.e., 193 nm and 248 nm). A variety of techniques, such as larger lenses, are used to make sub-wavelength features. Double patterning has also been introduced to assist in shrinking distances between features, especially if dry lith ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]