HOME
*





Hyperthermophilic
A hyperthermophile is an organism that thrives in extremely hot environments—from 60 °C (140 °F) upwards. An optimal temperature for the existence of hyperthermophiles is often above 80 °C (176 °F). Hyperthermophiles are often within the domain Archaea, although some bacteria are also able to tolerate extreme temperatures. Some of these bacteria are able to live at temperatures greater than 100 °C, deep in the ocean where high pressures increase the boiling point of water. Many hyperthermophiles are also able to withstand other environmental extremes, such as high acidity or high radiation levels. Hyperthermophiles are a subset of extremophiles. Their existence may support the possibility of extraterrestrial life, showing that life can thrive in environmental extremes. History Hyperthermophiles isolated from hot springs in Yellowstone National Park were first reported by Thomas D. Brock in 1965. Since then, more than 70 species have been established. The most extreme hyper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pyrococcus Furiosus
''Pyrococcus furiosus'' is a heterotrophic, strictly anaerobic, extremophilic, model species of archaea. It is classified as a hyperthermophile because it thrives best under extremely high temperatures, and is notable for having an optimum growth temperature of 100 °C (a temperature that would destroy most living organisms). ''P. furiosus'' belongs to the '' Pyrococcus'' genus, most commonly found in extreme environmental conditions of hydrothermal vents. It is one of the few prokaryotic organisms that has enzymes containing tungsten, an element rarely found in biological molecules. ''Pyrococcus furiosus'' has many potential industrial applications, owing to its unique thermostable properties. ''P. furiosus'' is used in the process of DNA amplification by way of polymerase chain reaction (PCR) because of its proofreading activity. Utilizing ''P. furiosus'' in PCR DNA amplification instead of the traditionally used ''Taq'' DNA polymerase allows for a significantly more accura ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thermotoga Maritima
''Thermotoga maritima'' is a hyperthermophilic, anaerobic organism that is a member of the order Thermotogales. ''T. maritima'' is well known for its ability to produce hydrogen (clean energy) and it is the only fermentative bacterium that has been shown to produce Hydrogen more than the Thauer limit (>4 mol H2 /mol glucose). It employs eFehydrogenases to produce hydrogen gas (H2) by fermenting many different types of carbohydrates. History First discovered in the sediment of a marine geothermal area near Vulcano, Italy, ''Thermotoga maritima'' resides in hot springs as well as hydrothermal vents. The ideal environment for the organism is a water temperature of , though it is capable of growing in waters of . ''Thermotoga maritima'' is the only bacterium known to grow at this high a temperature; the only other organisms known to live in environments this extreme are members of the domain Archaea. The hyperthermophilic abilities of ''T. maritima'', along with its deep l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aeropyrum Pernix
''Aeropyrum pernix'' is a species of extremophile archaea in the archaeal phylum Thermoproteota. It is an obligatorily thermophilic species. The first specimens were isolated from sediments in the sea off the coast of Japan. Discovery ''Aeropyrum pernix'' was the first strictly aerobic hyperthermophilic Archaea to be discovered. It was originally isolated from heated marine sediments and venting water collected in 1996 from a solfataric vent at Kodakara-jima Island in Kyūshū, Japan. Genome structure Its complete genome was sequenced in 1999 and is 1,669 kilobases in size, with 2,694 possible genes detected. All of the genes in the TCA cycle were found except for that of α-ketoglutarate dehydrogenase. In its place, the genes coding for the two subunits of 2-oxoacid:ferredoxin oxidoreductase were identified. Properties The cells of ''Aeropyrum pernix'' are spherical in shape and approximately 1 μm in diameter. The envelope surrounding the cells of ''Aeropyrum'' is abo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Extremophile
An extremophile (from Latin ' meaning "extreme" and Greek ' () meaning "love") is an organism that is able to live (or in some cases thrive) in extreme environments, i.e. environments that make survival challenging such as due to extreme temperature, radiation, salinity, or pH level. These organisms are ecologically dominant in the evolutionary history of the planet. Some spores and cocooned bacteria samples have been dormant for more than 40 million years, extremophiles have continued to thrive in the most extreme conditions, making them one of the most abundant lifeforms. Characteristics In the 1980s and 1990s, biologists found that microbial life has great flexibility for surviving in extreme environments—niches that are acidic, extraordinarily hot or within irregular air pressure for example—that would be completely inhospitable to complex organisms. Some scientists even concluded that life may have begun on Earth in hydrothermal vents far under the ocean's surfa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aquifex Aeolicus
"''Aquifex aeolicus''" is a chemolithoautotrophic, Gram-negative, motile, hyperthermophilic bacterium. "''A. aeolicus"'' is generally rod-shaped with an approximate length of 2.0-6.0μm and a diameter of 0.4-0.5μm. "''A. aeolicus''" is neither validly nor effectively published and, having no standing in nomenclature, should be styled in quotation marks. It is one of a handful of species in the Aquificota phylum, an unusual group of thermophilic bacteria that are thought to be some of the oldest species of bacteria, related to filamentous bacteria first observed at the turn of the century. "''A. aeolicus''" is also believed to be one of the earliest diverging species of thermophilic bacteria. "''A. aeolicus''" grows best in water between 85 °C and 95 °C, and can be found near underwater volcanoes or hot springs. It requires oxygen to survive but has been found to grow optimally under microaerophilic conditions. Due to its high stability against high temperature and la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archaea
Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebacteria kingdom), but this term has fallen out of use. Archaeal cells have unique properties separating them from the other two domains, Bacteria and Eukaryota. Archaea are further divided into multiple recognized phyla. Classification is difficult because most have not been isolated in a laboratory and have been detected only by their gene sequences in environmental samples. Archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat, square cells of ''Haloquadratum walsbyi''. Despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thermostability
In materials science and molecular biology, thermostability is the ability of a substance to resist irreversible change in its chemical or physical structure, often by resisting decomposition or polymerization, at a high relative temperature. Thermostable materials may be used industrially as fire retardants. A ''thermostable plastic'', an uncommon and unconventional term, is likely to refer to a thermosetting plastic that cannot be reshaped when heated, than to a thermoplastic that can be remelted and recast. Thermostability is also a property of some proteins. To be a thermostable protein means to be resistant to changes in protein structure due to applied heat. Thermostable proteins Most life-forms on Earth live at temperatures of less than 50 °C, commonly from 15 to 50 °C. Within these organisms are macromolecules (proteins and nucleic acids) which form the three-dimensional structures essential to their enzymatic activity. Above the native temperature of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thermotoga
''Thermotoga'' is a genus of the phylum ''Thermotogota''. Members of ''Thermotoga'' are hyperthermophilic bacteria whose cell is wrapped in a unique sheath-like outer membrane, called a "toga". The members of the phylum stain Gram-negative as they possess a thin peptidoglycan in between two lipid bilayers, albeit both peculiar. The peptidoglycan is unusual as the crosslink is not only meso-diaminopimelate as occurs in Pseudomonadota, but D-lysine.All proteinogenic amino acids have the L- configuration; in peptidoglycan some amino acids with the D- configuration are present. Lysine is synthesised from meso-diaminopimelate by Diaminopimelate decarboxylase The species are anaerobes with varying degrees of oxygen tolerance. They are capable of reducing elemental sulphur (S0) to hydrogen sulphide, which in turn can be used. Whether thermophily is an innovation of the lineage or an ancestral trait is unclear and cannot be determined. The genome of '' Thermotoga maritima'' was sequen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Indian Ridge
The Central Indian Ridge (CIR) is a north–south-trending mid-ocean ridge in the western Indian Ocean. Geological setting The morphology of the CIR is characteristic of slow to intermediate ridges. The axial valley is 500–1000 m deep; 50–100 km-long ridge segments are separated by 30 km-long transform faults and 10 km-long non-transform discontinuities. Melt supply comes from axial volcanic ridges that are 15 km-long, 1–2 km wide, and reaches 100–200 m above the axial floor. With a spreading rate of 30 mm/yr near the Equator and 49 mm/yr near the Rodrigues Triple Junction (RTJ) at its southern end, the CIR is an intermediately fast spreading ridge characterised by moderate obliquity and few large offsets, the obvious exception being the almost 300 km-long Mary Celeste Fracture Zone at 18°S. Between 21°S and the Mary Celeste Fracture Zone (18°S) the CIR deviates westward. Along this section the larger offsets switc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sulfolobus
''Sulfolobus'' is a genus of microorganism in the family Sulfolobaceae. It belongs to the archaea domain. ''Sulfolobus'' species grow in volcanic springs with optimal growth occurring at pH 2-3 and temperatures of 75-80 °C, making them acidophiles and thermophiles respectively. ''Sulfolobus'' cells are irregularly shaped and flagellar. Species of ''Sulfolobus'' are generally named after the location from which they were first isolated, e.g. ''Sulfolobus solfataricus'' was first isolated in the Solfatara volcano. Other species can be found throughout the world in areas of volcanic or geothermal activity, such as geological formations called mud pots, which are also known as ''solfatare'' (plural of solfatara). ''Sulfolobus'' as a model to study the molecular mechanisms of DNA replication When the first Archaeal genome, '' Methanococcus jannaschii'', had been sequenced completely in 1996, it was found that the genes in the genome of ''Methanococcus jannaschii'' involv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Methanococcus Jannaschii
''Methanocaldococcus jannaschii'' (formerly ''Methanococcus jannaschii'') is a thermophilic methanogenic archaean in the class Methanococci. It was the first archaeon to have its complete genome sequenced. The sequencing identified many genes unique to the archaea. Many of the synthesis pathways for methanogenic cofactors were worked out biochemically in this organism, as were several other archaeal-specific metabolic pathways. History ''Methanocaldococcus jannaschii'' was isolated from a submarine hydrothermal vent at Woods Hole Oceanographic Institution. Sequencing ''Methanocaldococcus jannaschii'' was sequenced by a group at TIGR led by Craig Venter using whole-genome shotgun sequencing. ''Methanocaldococcus jannaschii'' represented the first member of the Archaea to have its genome sequenced. According to Venter, the unique features of the genome provided strong evidence that there are three domains of life. Taxonomy ''Methanocaldoccus jannaschii'' is a member of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archaeoglobus
''Archaeoglobus'' is a genus of the phylum Euryarchaeota. ''Archaeoglobus'' can be found in high-temperature oil fields where they may contribute to oil field souring. Metabolism ''Archaeoglobus'' grow anaerobically at extremely high temperatures between 60 and 95 °C, with optimal growth at 83 °C (ssp. ''A. fulgidus'' VC-16). They are sulfate-reducing archaea, coupling the reduction of sulfate to sulfide with the oxidation of many different organic carbon sources, including complex polymers. ''A. lithotrophicus'' live chemolitho-autotrophically from hydrogen, sulfate and carbon dioxide. Also ''A. profundus'' grow lithotrophically, but while this species needs acetate and CO2 for biosynthesis they are heterotroph. The complete ''A. fulgidus'' genome sequence revealed the presence of a nearly complete set of genes for methanogenesis. The function of these genes in ''A. fulgidus'' remains unknown, while the lack of the enzyme methyl-CoM reductase does not allow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]