HOME
*





Higgs Prime
A Higgs prime, named after Denis Higgs, is a prime number with a totient (one less than the prime) that evenly divides the square of the product of the smaller Higgs primes. (This can be generalized to cubes, fourth powers, etc.) To put it algebraically, given an exponent ''a'', a Higgs prime ''Hp''''n'' satisfies : \phi(Hp_n), \prod_^ ^a\mboxHp_n > Hp_ where Φ(''x'') is Euler's totient function. For squares, the first few Higgs primes are 2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, ... . So, for example, 13 is a Higgs prime because the square of the product of the smaller Higgs primes is 5336100, and divided by 12 this is 444675. But 17 is not a Higgs prime because the square of the product of the smaller primes is 901800900, which leaves a remainder of 4 when divided by 16. From observation of the first few Higgs primes for squares through seventh powers, it would seem more compact to list those primes that are not Higgs primes: Observation further reve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Denis Higgs
Denis A. Higgs ( – ) was a British mathematician, Doctor of Mathematics, and professor of mathematics who specialised in combinatorics, universal algebra, and category theory. He wrote one of the most influential papers in category theory entitled ''A category approach to boolean valued set theory'', which introduced many students to topos theory. He was a member of the National Committee of Liberation and was an outspoken critic against the apartheid in South Africa. Life He earned degrees from Cambridge University, St John's College, in England, University of the Witwatersrand in South Africa, and McMaster University in Canada. In 1962, he became a member of the National Committee of Liberation, a movement whose main objective was to dismantle the apartheid in South Africa. On 28 August 1964, he was kidnapped from his home in Lusaka, Zambia. Then South Africa's Justice Minister John Vorster, who later became Prime Minister, denied any involvement by either the South ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


29 (number)
29 (twenty-nine) is the natural number following 28 and preceding 30. Mathematics * 29 is the tenth prime number, and the fourth primorial prime. * 29 forms a twin prime pair with thirty-one, which is also a primorial prime. Twenty-nine is also the sixth Sophie Germain prime. * 29 is the sum of three consecutive squares, 22 + 32 + 42. * 29 is a Lucas prime, a Pell prime, and a tetranacci number. * 29 is an Eisenstein prime with no imaginary part and real part of the form 3n − 1. 29 is also the 10th supersingular prime. * None of the first 29 natural numbers have more than two different prime factors. This is the longest such consecutive sequence. * 29 is a Markov number, appearing in the solutions to ''x'' + ''y'' + ''z'' = 3''xyz'': , , , , etc. * 29 is a Perrin number, preceded in the sequence by 12, 17, 22. * 29 is the smallest positive whole number that cannot be made from the numbers , using each exactly once and using only addition, subtraction, multiplication, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sylvester's Sequence
In number theory, Sylvester's sequence is an integer sequence in which each term of the sequence is the product of the previous terms, plus one. The first few terms of the sequence are :2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443 . Sylvester's sequence is named after James Joseph Sylvester, who first investigated it in 1880. Its values grow doubly exponentially, and the sum of its reciprocals forms a series of unit fractions that converges to 1 more rapidly than any other series of unit fractions. The recurrence by which it is defined allows the numbers in the sequence to be factored more easily than other numbers of the same magnitude, but, due to the rapid growth of the sequence, complete prime factorizations are known only for a few of its terms. Values derived from this sequence have also been used to construct finite Egyptian fraction representations of 1, Sasakian Einstein manifolds, and hard instances for online algorithms. Formal definiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Strong Law Of Small Numbers
In mathematics, the "strong law of small numbers" is the humorous law that proclaims, in the words of Richard K. Guy (1988): In other words, any given small number appears in far more contexts than may seem reasonable, leading to many apparently surprising coincidences in mathematics, simply because small numbers appear so often and yet are so few. Earlier (1980) this "law" was reported by Martin Gardner. Guy's subsequent 1988 paper of the same title gives numerous examples in support of this thesis. (This paper earned him the MAA Lester R. Ford Award.) Second strong law of small numbers Guy gives Moser's circle problem as an example. The number of and . The first five terms for the number of regions follow a simple sequence, broken by the sixth term. Guy also formulated a second strong law of small numbers: Guy explains this latter law by the way of examples: he cites numerous sequences for which observing the first few members may lead to a wrong guess about the gener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat Prime
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form :F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: : 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... . If 2''k'' + 1 is prime and ''k'' > 0, then ''k'' must be a power of 2, so 2''k'' + 1 is a Fermat number; such primes are called Fermat primes. , the only known Fermat primes are ''F''0 = 3, ''F''1 = 5, ''F''2 = 17, ''F''3 = 257, and ''F''4 = 65537 ; heuristics suggest that there are no more. Basic properties The Fermat numbers satisfy the following recurrence relations: : F_ = (F_-1)^+1 : F_ = F_ \cdots F_ + 2 for ''n'' ≥ 1, : F_ = F_ + 2^F_ \cdots F_ : F_ = F_^2 - 2(F_-1)^2 for ''n'' ≥ 2. Each of these relations can be proved by mathematical induction. From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer facto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


47 (number)
47 (forty-seven) is the natural number following 46 and preceding 48. It is a prime number. In mathematics Forty-seven is the fifteenth prime number, a safe prime, the thirteenth supersingular prime, the fourth isolated prime, and the sixth Lucas prime. Forty-seven is a highly cototient number. It is an Eisenstein prime with no imaginary part and real part of the form . It is a Lucas number. It is also a Keith number because its digits appear as successive terms earlier in the series of Lucas numbers: 2, 1, 3, 4, 7, 11, 18, 29, 47, ... It is the number of trees on 9 unlabeled nodes. Forty-seven is a strictly non-palindromic number. Its representation in binary being 101111, 47 is a prime Thabit number, and as such is related to the pair of amicable numbers . In science * 47 is the atomic number of silver. Astronomy * The 47-year cycle of Mars: after 47 years – 22 synodic periods of 780 days each – Mars returns to the same position among the stars and is in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


43 (number)
43 (forty-three) is the natural number following 42 and preceding 44. In mathematics Forty-three is the 14th smallest prime number. The previous is forty-one, with which it comprises a twin prime, and the next is forty-seven. 43 is the smallest prime that is not a Chen prime. It is also the third Wagstaff prime. 43 is the fourth term of Sylvester's sequence, one more than the product of the previous terms (2 × 3 × 7). 43 is a centered heptagonal number. Let ''a'' = ''a'' = 1, and thenceforth ''a'' = (''a'' + ''a'' + ... + ''a''). This sequence continues 1, 1, 2, 3, 5, 10, 28, 154... . ''a'' is the first term of this sequence that is not an integer. 43 is a Heegner number. 43 is the largest prime which divides the order of the Janko group J4. 43 is a repdigit in base 6 (111). 43 is the number of triangles inside the Sri Yantra. 43 is the largest natural number that is not an (original) McNugget number. 43 is the smallest prime number expressible as the sum of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

37 (number)
37 (thirty-seven) is the natural number following 36 and preceding 38. In mathematics 37 is the 12th prime number and the third unique prime in decimal. 37 is the first irregular prime, and the third isolated prime without a twin prime. It is also the third cuban prime, the fourth emirp, and the fifth lucky prime. *37 is the third star number and the fourth centered hexagonal number. *The sum of the squares of the first 37 primes is divisible by 37. *Every positive integer is the sum of at most 37 fifth powers (see Waring's problem). *37 appears in the Padovan sequence, preceded by the terms 16, 21, and 28 (it is the sum of the first two of these). *Since the greatest prime factor of 372 + 1 = 1370 is 137, which is substantially more than 37 twice, 37 is a Størmer number. In base-ten, 37 is a permutable prime with 73, which is the 21st prime number. By extension, the mirroring of their digits and prime indexes makes 73 the only Sheldon prime. In moonshine theory, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

31 (number)
31 (thirty-one) is the natural number following 30 and preceding 32. It is a prime number. In mathematics 31 is the 11th prime number. It is a superprime and a self prime (after 3, 5, and 7), as no integer added up to its base 10 digits results in 31. It is a lucky prime and a happy number; two properties it shares with 13, which is its dual emirp and permutable prime. 31 is also a primorial prime, like its twin prime, 29. 31 is the number of regular polygons with an odd number of sides that are known to be constructible with compass and straightedge, from combinations of known Fermat primes of the form 22''n'' + 1. 31 is the third Mersenne prime of the form 2''n'' − 1. It is also the eighth Mersenne prime exponent, specifically for the number 2,147,483,647, which is the maximum positive value for a 32-bit signed binary integer in computing. After 3, it is the second Mersenne prime not to be a double Mersenne prime. 127, which is the 31st prime number, is a do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


23 (number)
23 (twenty-three) is the natural number following 22 and preceding 24. In mathematics Twenty-three is the ninth prime number, the smallest odd prime that is not a twin prime. It is, however, a cousin prime with 19, and a sexy prime with 17 as well as 29. Twenty-three is also the fifth factorial prime, and the second Woodall prime. It is an Eisenstein prime with no imaginary part and real part of the form 3''n'' − 1. 23 is the fifth Sophie Germain prime and the fourth safe prime, 23 is the next to last member of the first Cunningham chain of the first kind to have five terms (2, 5, 11, 23, 47). Since 14! + 1 is a multiple of 23 but 23 is not one more than a multiple of 14, 23 is a Pillai prime. 23 is the smallest odd prime to be a highly cototient number, as the solution to ''x'' − φ(''x'') for the integers 95, 119, 143, 529. It is also a happy number in base-10. *In decimal, 23 is the second Smarandache–Wellin prime, as i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which alway ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

19 (number)
19 (nineteen) is the natural number following 18 and preceding 20. It is a prime number. Mathematics 19 is the eighth prime number, and forms a sexy prime with 13, a twin prime with 17, and a cousin prime with 23. It is the third full reptend prime, the fifth central trinomial coefficient, and the seventh Mersenne prime exponent. It is also the second Keith number, and more specifically the first Keith prime. * 19 is the maximum number of fourth powers needed to sum up to any natural number, and in the context of Waring's problem, 19 is the fourth value of g(k). * The sum of the squares of the first 19 primes is divisible by 19. *19 is the sixth Heegner number. 67 and 163, respectively the 19th and 38th prime numbers, are the two largest Heegner numbers, of nine total. * 19 is the third centered triangular number as well as the third centered hexagonal number. : The 19th triangular number is 190, equivalently the sum of the first 19 non-zero integers, that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]