HOME





Hamiltonian Fluid Mechanics
Hamiltonian fluid mechanics is the application of Hamiltonian mechanics, Hamiltonian methods to fluid mechanics. Note that this formalism only applies to non-dissipative fluids. Irrotational barotropic flow Take the simple example of a barotropic, inviscid vorticity-free fluid. Then, the Conjugate variables, conjugate fields are the mass density field ''ρ'' and the velocity potential ''φ''. The Poisson bracket is given by :\=\delta^d(\vec-\vec) and the Hamiltonian by: :H=\int \mathrm^d x \mathcal=\int \mathrm^d x \left( \frac\rho(\nabla \varphi)^2 +e(\rho) \right), where ''e'' is the internal energy density, as a function of ''ρ''. For this barotropic flow, the internal energy is related to the pressure ''p'' by: :e'' = \fracp', where an apostrophe ('), denotes differentiation with respect to ''ρ''. This Hamiltonian structure gives rise to the following two equations of motion: : \begin \frac&=+\frac= -\nabla \cdot(\rho\vec), \\ \frac&=-\frac=-\frac\ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Mechanics
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta''. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a Hamilton–Jacobi equation, link between classical and quantum mechanics. Overview Phase space coordinates (''p'', ''q'') and Hamiltonian ''H'' Let (M, \mathcal L) be a Lagrangian mechanics, mechanical system with configuration space (physics), configuration space M and smooth Lagrangian_mechanics#Lagrangian, Lagrangian \mathcal L. Select a standard coordinate system (\boldsymbol,\boldsymbol) on M. The quantities \textstyle p_i(\boldsymbol,\boldsymbol,t) ~\stackrel~ / are called ''m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Internal Energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, ''i.e.'', the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. Without a thermodynamic process, the internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics. The notion has been introduced to describe the systems characterized by temperature variations, te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamiltonian Field Theory
In theoretical physics, Hamiltonian field theory is the field-theoretic analogue to classical Hamiltonian mechanics. It is a formalism in classical field theory alongside Lagrangian field theory. It also has applications in quantum field theory. Definition The Hamiltonian for a system of discrete particles is a function of their generalized coordinates and conjugate momenta, and possibly, time. For continua and fields, Hamiltonian mechanics is unsuitable but can be extended by considering a large number of point masses, and taking the continuous limit, that is, infinitely many particles forming a continuum or field. Since each point mass has one or more degrees of freedom, the field formulation has infinitely many degrees of freedom. One scalar field The Hamiltonian density is the continuous analogue for fields; it is a function of the fields, the conjugate "momentum" fields, and possibly the space and time coordinates themselves. For one scalar field , the Hamiltonian density ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Luke's Variational Principle
In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967. This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the mild-slope equation, or using the averaged Lagrangian approach for wave propagation in inhomogeneous media. Luke's Lagrangian formulation can also be recast into a Hamiltonian formulation in terms of the surface elevation and velocity potential at the free surface. Originally appeared in '' Zhurnal Prildadnoi Mekhaniki i Tekhnicheskoi Fiziki'' 9(2): 86–94, 1968. This is often used when modelling the spectral density evolution of the free-surface in a sea state, sometimes called wave turbulence. Both the Lagrangian and Hamiltonian formulations can be extended to include surface tension effects, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nambu Mechanics
In mathematics, Nambu mechanics is a generalization of Hamiltonian mechanics involving multiple Hamiltonians. Recall that Hamiltonian mechanics is based upon the flows generated by a smooth Hamiltonian over a symplectic manifold. The flows are symplectomorphisms and hence obey Liouville's theorem. This was soon generalized to flows generated by a Hamiltonian over a Poisson manifold. In 1973, Yoichiro Nambu suggested a generalization involving Nambu–Poisson manifolds with more than one Hamiltonian. In 1994, Leon Takhtajan revisited Nambu dynamics. Nambu bracket Specifically, consider a differential manifold , for some integer ; one has a smooth -linear map from copies of to itself, such that it is completely antisymmetric: the Nambu bracket, :\ : C^\infty(M) \times \cdots C^\infty(M) \rightarrow C^\infty(M), which acts as a derivation :\ = \g + f\, whence the Filippov Identities (FI) (evocative of the Jacobi identities, but unlike them, ''not'' antisymmetriz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vorticity
In continuum mechanics, vorticity is a pseudovector (or axial vector) field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings. Mathematically, the vorticity \boldsymbol is the curl of the flow velocity \mathbf v: :\boldsymbol \equiv \nabla \times \mathbf v\,, where \nabla is the nabla operator. Conceptually, \boldsymbol could be determined by marking parts of a continuum in a small neighborhood of the point in question, and watching their ''relative'' displacements as they move along the flow. The vorticity \boldsymbol would be twice the mean angular velocity vector of those particles relative to their center of mass, orie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler Equations
In mathematics and physics, many topics are eponym, named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include their own unique function, equation, formula, identity, number (single or sequence), or other mathematical entity. Many of these entities have been given simple yet ambiguous names such as Euler's function, Euler's equation, and Euler's formula. Euler's work touched upon so many fields that he is often the earliest written reference on a given matter. In an effort to avoid naming everything after Euler, some discoveries and theorems are attributed to the first person to have proved them ''after'' Euler. Conjectures *Euler's sum of powers conjecture disproved for exponents 4 and 5 during the 20th century; unsolved for higher exponents *Mutually orthogonal Latin squares#Thirty-six officers problem, Euler's Graeco-Latin square conjecture proved to be true for and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equations Of Motion
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics. Types There are two main descriptions of motion: dynamics and kinematics. Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson Bracket
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called '' canonical transformations'', which map canonical coordinate systems into other canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables (below symbolized by q_i and p_i, respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself \mathcal H =\mathcal H(q, p, t) as one of the new canonical momentum coordinates. In a more general sense, the Poisson bracket is used to define a Poisson algebra, of which the algebra of functions on a Poisson manifold is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasma (physics), plasmas) and the forces on them. Originally applied to water (hydromechanics), it found applications in a wide range of disciplines, including mechanical engineering, mechanical, aerospace engineering, aerospace, civil engineering, civil, chemical engineering, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into ''fluid statics'', the study of various fluids at rest; and ''fluid dynamics'', the study of the effect of forces on fluid motion. It is a branch of ''continuum mechanics'', a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a macroscopic viewpoint rather than from microscopic. Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Velocity Potential
A velocity potential is a scalar potential used in potential flow theory. It was introduced by Joseph-Louis Lagrange in 1788. It is used in continuum mechanics, when a continuum occupies a simply-connected region and is irrotational. In such a case, \nabla \times \mathbf =0 \,, where denotes the flow velocity. As a result, can be represented as the gradient of a scalar function : \mathbf = \nabla \varphi\ = \frac \mathbf + \frac \mathbf + \frac \mathbf \,. is known as a velocity potential for . A velocity potential is not unique. If is a velocity potential, then is also a velocity potential for , where is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the corresponding flow. Hence if a velocity potential satisfies Laplace equation, the flow is incompressible. Unlike a stream function, a velocity potential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass Density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek language, Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be used: \rho = \frac, where ''ρ'' is the density, ''m'' is the mass, and ''V'' is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate this quantity is more specifically called specific weight. For a pure substance, the density is equal to its mass concentration (chemistry), mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium is the densest known element at standard conditions for temperature and pressure. To simplify comparisons of density across different systems of units, it is sometimes replaced by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]