Hales–Jewett Theorem
In mathematics, the Hales–Jewett theorem is a fundamental combinatorial result of Ramsey theory named after Alfred W. Hales and Robert I. Jewett, concerning the degree to which high-dimensional objects must necessarily exhibit some combinatorial structure; it is impossible for such objects to be "completely random". An informal geometric statement of the theorem is that for any positive integers ''n'' and ''c'' there is a number ''H'' such that if the cells of a ''H''-dimensional ''n''×''n''×''n''×...×''n'' cube are colored with ''c'' colors, there must be one row, column, or certain diagonal (more details below) of length ''n'' all of whose cells are the same color. In other words, the higher-dimensional, multi-player, ''n''-in-a-row generalization of a game of tic-tac-toe cannot end in a draw, no matter how large ''n'' is, no matter how many people ''c'' are playing, and no matter which player plays each turn, provided only that it is played on a board of sufficiently high ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
TECHNICAL
Technical may refer to: * Technical (vehicle), an improvised fighting vehicle * Technical analysis, a discipline for forecasting the future direction of prices through the study of past market data * Technical drawing, showing how something is constructed or functions (also known as drafting) * Technical file, set of technical drawings * Technical death metal, a subgenre of death metal that focuses on complex rhythms, riffs, and song structures * Technical foul, an infraction of the rules in basketball usually concerning unsportsmanlike non-contact behavior * Technical rehearsal for a performance, often simply referred to as a technical * Technical support, a range of services providing assistance with technology products * Vocational education, often known as technical education * Legal technicality, an aspect of law See also * Lego Technic, a line of Lego toys * Tech (other) * Technicals (other) Technicals may refer to: * Technical (vehicle), an improvise ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Recursive
In computability theory, a primitive recursive function is roughly speaking a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop can be determined before entering the loop). Primitive recursive functions form a strict subset of those general recursive functions that are also total functions. The importance of primitive recursive functions lies in the fact that most computable functions that are studied in number theory (and more generally in mathematics) are primitive recursive. For example, addition and division, the factorial and exponential function, and the function which returns the ''n''th prime are all primitive recursive. In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. It is hence not that easy to devise a computable function that is ''n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorems In Discrete Mathematics
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bartel Leendert Van Der Waerden
Bartel Leendert van der Waerden (; 2 February 1903 – 12 January 1996) was a Dutch mathematician and historian of mathematics. Biography Education and early career Van der Waerden learned advanced mathematics at the University of Amsterdam and the University of Göttingen, from 1919 until 1926. He was much influenced by Emmy Noether at Göttingen, Germany. Amsterdam awarded him a Ph.D. for a thesis on algebraic geometry, supervised by Hendrick de Vries. Göttingen awarded him the habilitation in 1928. In that year, at the age of 25, he accepted a professorship at the University of Groningen. In his 27th year, Van der Waerden published his ''Moderne Algebra'', an influential two-volume treatise on abstract algebra, still cited, and perhaps the first treatise to treat the subject as a comprehensive whole. This work systematized an ample body of research by Emmy Noether, David Hilbert, Richard Dedekind, and Emil Artin. In the following year, 1931, he was appointed professor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graham–Rothschild Theorem
In mathematics, the Graham–Rothschild theorem is a theorem that applies Ramsey theory to combinatorics on words and combinatorial cubes. It is named after Ronald Graham and Bruce Lee Rothschild, who published its proof in 1971. Through the work of Graham, Rothschild, and in 1972, it became part of the foundations of structural Ramsey theory. A special case of the Graham–Rothschild theorem motivates the definition of Graham's number, a number that was popularized by Martin Gardner in ''Scientific American'' and listed in the '' Guinness Book of World Records'' as the largest number ever appearing in a mathematical proof. Background The theorem involves sets of strings, all having the same length n, over a finite alphabet, together with a group acting on the alphabet. A combinatorial cube is a subset of strings determined by constraining some positions of the string to contain a fixed letter of the alphabet, and by constraining other pairs of positions to be equal to each oth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Corners Theorem
In arithmetic combinatorics, the corners theorem states that for every \varepsilon>0, for large enough N, any set of at least \varepsilon N^2 points in the N\times N grid \^2 contains a corner, i.e., a triple of points of the form \ with h\ne 0. It was first proved by Miklós Ajtai and Endre Szemerédi in 1974 using Szemerédi's theorem.. In 2003, József Solymosi gave a short proof using the triangle removal lemma. Statement Define a corner to be a subset of \mathbb^2 of the form \, where x,y,h\in \mathbb and h\ne 0. For every \varepsilon>0, there exists a positive integer N(\varepsilon) such that for any N\ge N(\varepsilon), any subset A\subseteq\^2 with size at least \varepsilon N^2 contains a corner. The condition h\ne 0 can be relaxed to h>0 by showing that if A is dense, then it has some dense subset that is centrally symmetric. Proof overview What follows is a sketch of Solymosi's argument. Suppose A\subset\^2 is corner-free. Construct an auxiliary tripartite graph G w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal D'Analyse Mathématique
The ''Journal d'Analyse Mathématique'' is a triannual peer-reviewed scientific journal published by Magnes Press (Hebrew University of Jerusalem). It was established in 1951 by Binyamin Amirà. It covers research in mathematics, especially classical analysis and related areas such as complex function theory, ergodic theory, functional analysis, harmonic analysis, partial differential equations, and quasiconformal mapping. Abstracting and indexing The journal is abstracted and indexed in: *MathSciNet *Science Citation Index Expanded *Scopus *ZbMATH Open According to the ''Journal Citation Reports'', the journal has a 2021 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 1.132. References External links *{{Official website, 1=https://www.springer.com/mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ergodic Theory
Ergodic theory (Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Szemerédi's Theorem
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers ''A'' with positive natural density contains a ''k''-term arithmetic progression for every ''k''. Endre Szemerédi proved the conjecture in 1975. Statement A subset ''A'' of the natural numbers is said to have positive upper density if :\limsup_\frac > 0. Szemerédi's theorem asserts that a subset of the natural numbers with positive upper density contains infinitely many arithmetic progressions of length ''k'' for all positive integers ''k''. An often-used equivalent finitary version of the theorem states that for every positive integer ''k'' and real number \delta \in (0, 1], there exists a positive integer :N = N(k,\delta) such that every subset of of size at least δ''N'' contains an arithmetic progression of length ''k''. Another formulation uses the function ''r''''k''(''N''), the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Van Der Waerden's Theorem
Van der Waerden's theorem is a theorem in the branch of mathematics called Ramsey theory. Van der Waerden's theorem states that for any given positive integers ''r'' and ''k'', there is some number ''N'' such that if the integers are colored, each with one of ''r'' different colors, then there are at least ''k'' integers in arithmetic progression whose elements are of the same color. The least such ''N'' is the Van der Waerden number ''W''(''r'', ''k''), named after the Dutch mathematician B. L. van der Waerden. Example For example, when ''r'' = 2, you have two colors, say and . ''W''(2, 3) is bigger than 8, because you can color the integers from like this: and no three integers of the same color form an arithmetic progression. But you can't add a ninth integer to the end without creating such a progression. If you add a , then the , , and are in arithmetic progression. Alternatively, if you add a , then the , , and are in arithmetic progression. In fact, there is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |