Günter P. Wagner
Günter P. Wagner (born May 28, 1954 in Vienna, Austria) is an Austrian-born evolutionary biologist who is Professor of Ecology and Evolutionary biology at Yale University, and head of the Wagner Lab. Education and training After undergraduate education in chemical engineering, Wagner studied zoology and mathematical logic at the University of Vienna, Austria. During his graduate study, Wagner worked with the Viennese zoologist Rupert Riedl and the theoretical chemist Peter Schuster, and finished his PhD in theoretical population genetics in 1979. Wagner conducted postdoctoral research at Max Planck Institutes in Göttingen and Tübingen, as well as at the University of Göttingen. Wagner began his academic career as assistant professor in the Theoretical Biology Department of the University of Vienna in 1985. In 1991, he moved to Yale University as a full professor of biology and has served as the first chair of Yale's Department of Ecology and Evolution from 1997 2002 and then ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vienna
en, Viennese , iso_code = AT-9 , registration_plate = W , postal_code_type = Postal code , postal_code = , timezone = CET , utc_offset = +1 , timezone_DST = CEST , utc_offset_DST = +2 , blank_name = Vehicle registration , blank_info = W , blank1_name = GDP , blank1_info = € 96.5 billion (2020) , blank2_name = GDP per capita , blank2_info = € 50,400 (2020) , blank_name_sec1 = HDI (2019) , blank_info_sec1 = 0.947 · 1st of 9 , blank3_name = Seats in the Federal Council , blank3_info = , blank_name_sec2 = GeoTLD , blank_info_sec2 = .wien , website = , footnotes = , image_blank_emblem = Wien logo.svg , blank_emblem_size = Vienna ( ; german: Wien ; ba ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
University Of Göttingen
The University of Göttingen, officially the Georg August University of Göttingen, (german: Georg-August-Universität Göttingen, known informally as Georgia Augusta) is a public research university in the city of Göttingen, Germany. Founded in 1734 by George II, King of Great Britain and Elector of Hanover, and starting classes in 1737, the Georgia Augusta was conceived to promote the ideals of the Enlightenment. It is the oldest university in the state of Lower Saxony and the largest in student enrollment, which stands at around 31,600. Home to many noted figures, it represents one of Germany's historic and traditional institutions. According to an official exhibition held by the University of Göttingen in 2002, 44 Nobel Prize winners had been affiliated with the University of Göttingen as alumni, faculty members or researchers by that year alone. The University of Göttingen was previously supported by the German Universities Excellence Initiative, holds memberships ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Molecular Evolution
Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes. History The history of molecular evolution starts in the early 20th century with comparative biochemistry, and the use of "fingerprinting" methods such as immune assays, gel electrophoresis and paper chromatography in the 1950s to explore homologous proteins. The field of molecular evolution came into its own in the 1960s and 1970s, following the rise of molecular ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Developmental Genetics
Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of Regeneration (biology), regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism. Perspectives The main processes involved in the embryogenesis, embryonic development of animals are: tissue patterning (via regional specification and patterned cellular differentiation, cell differentiation); tissue growth; and tissue morphogenesis. * Regional specification refers to the processes that create the spatial patterns in a ball or sheet of initially similar cells. This generally involves the action of cytoplasmic determinants, located within parts of the fertilized egg, and of inductive signals emitted from signaling centers in the embryo. The early stages of regional specification do not generate functional differentiated cells, but cell populations committed to developing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Epistasis
Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is dependent on the genetic background in which it appears. Epistatic mutations therefore have different effects on their own than when they occur together. Originally, the term ''epistasis'' specifically meant that the effect of a gene variant is masked by that of a different gene. The concept of ''epistasis'' originated in genetics in 1907 but is now used in biochemistry, computational biology and evolutionary biology. The phenomenon arises due to interactions, either between genes (such as mutations also being needed in regulators of gene expression) or within them (multiple mutations being needed before the gene loses function), leading to non-linear effects. Epistasis has a great influence on the shape of evolutionary landscapes, which l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Genetic Variability
Genetic variability is either the presence of, or the generation of, genetic differences. It is defined as "the formation of individuals differing in genotype, or the presence of genotypically different individuals, in contrast to environmentally induced differences which, as a rule, cause only temporary, nonheritable changes of the phenotype". Genetic variability in a population is important for biodiversity. Causes There are many sources of genetic variability in a population: *Homologous recombination is a significant source of variability. During meiosis in sexual organisms, two homologous chromosomes cross over one another and exchange genetic material. The chromosomes then split apart and are ready to contribute to forming an offspring. Recombination is random and is governed by its own set of genes. Being controlled by genes means that recombination is variable in frequency. *Immigration, emigration, and translocation – each of these is the movement of an individual ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Variation (genetics)
Genetic variability is either the presence of, or the generation of, genetic differences. It is defined as "the formation of individuals differing in genotype, or the presence of genotypically different individuals, in contrast to environmentally induced differences which, as a rule, cause only temporary, nonheritable changes of the phenotype". Genetic variability in a population is important for biodiversity. Causes There are many sources of genetic variability in a population: *Homologous recombination is a significant source of variability. During meiosis in sexual organisms, two homologous chromosomes cross over one another and exchange genetic material. The chromosomes then split apart and are ready to contribute to forming an offspring. Recombination is random and is governed by its own set of genes. Being controlled by genes means that recombination is variable in frequency. *Immigration, emigration, and translocation – each of these is the movement of an individua ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modularity (biology)
Modularity refers to the ability of a system to organize discrete, individual units that can overall increase the efficiency of network activity and, in a biological sense, facilitates selective forces upon the network. Modularity is observed in all model systems, and can be studied at nearly every scale of biological organization, from molecular interactions all the way up to the whole organism. Evolution of Modularity The exact evolutionary origins of biological modularity has been debated since the 1990s. In the mid 1990s, Günter Wagner argued that modularity could have arisen and been maintained through the interaction of four evolutionary modes of action: Selection for the rate of adaptation: If different complexes evolve at different rates, then those evolving more quickly reach fixation in a population faster than other complexes. Thus, common evolutionary rates could be forcing the genes for certain proteins to evolve together while preventing other genes from being co- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canalisation (genetics)
Canalisation is a measure of the ability of a population to produce the same phenotype regardless of variability of its environment or genotype. It is a form of evolutionary robustness. The term was coined in 1942 by C. H. Waddington to capture the fact that "developmental reactions, as they occur in organisms submitted to natural selection...are adjusted so as to bring about one definite end-result regardless of minor variations in conditions during the course of the reaction". He used this word rather than robustness to take into account that biological systems are not robust in quite the same way as, for example, engineered systems. Biological robustness or canalisation comes about when developmental pathways are shaped by evolution. Waddington introduced the concept of the epigenetic landscape, in which the state of an organism rolls "downhill" during development. In this metaphor, a canalised trait is illustrated as a valley (which he called a creode) enclosed by high ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Variational Properties
In evolutionary biology, the variational properties of an organism are those properties relating to the production of variation among its offspring. In a broader sense variational properties include phenotypic plasticity. Wagner, G. P. and Altenberg, L. 1996. Complex adaptations and the evolution of evolvability. ''Evolution'' 50 (3): 967-976. Variational properties contrast with functional properties. While the functional properties of an organism determine is level of adaptedness to its environment, it is the variational properties of the organisms in a species that chiefly determine its evolvability and genetic robustness. Variational properties group together many classical and more recent concepts of evolutionary biology. It includes the classical concepts of pleiotropy, canalization, developmental constraints, developmental bias, morphological integration, developmental homeostasis and later concepts such as robustness, neutral networks, modularity, the G-matrix and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Evolution Of Dominance
In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new (''de novo'') or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child (see Sex linkage). Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance such as incomplete do ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mutation–selection Balance
Mutation–selection balance is an equilibrium in the number of deleterious alleles in a population that occurs when the rate at which deleterious alleles are created by mutation equals the rate at which deleterious alleles are eliminated by selection.Herron, JC and S Freeman. 2014. Evolutionary Analysis, 5th Edition. Pearson. The majority of genetic mutations are neutral or deleterious; beneficial mutations are relatively rare. The resulting influx of deleterious mutations into a population over time is counteracted by negative selection, which acts to purge deleterious mutations. Setting aside other factors (e.g., balancing selection, and genetic drift), the equilibrium number of deleterious alleles is then determined by a balance between the deleterious mutation rate and the rate at which selection purges those mutations. Mutation–selection balance was originally proposed to explain how genetic variation is maintained in populations, although several other ways for deleteriou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |