HOME
*





Gauge Theory Gravity
Gauge theory gravity (GTG) is a theory of gravitation cast in the mathematical language of geometric algebra. To those familiar with general relativity, it is highly reminiscent of the tetrad formalism although there are significant conceptual differences. Most notably, the background in GTG is flat, Minkowski spacetime. The equivalence principle is not assumed, but instead follows from the fact that the gauge covariant derivative is minimally coupled. As in general relativity, equations structurally identical to the Einstein field equations are derivable from a variational principle. A spin tensor can also be supported in a manner similar to Einstein–Cartan–Sciama–Kibble theory. GTG was first proposed by Lasenby, Doran, and Gull in 1998 as a fulfillment of partial results presented in 1993. The theory has not been widely adopted by the rest of the physics community, who have mostly opted for differential geometry approaches like that of the related gauge gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitation
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light. On Earth, gravity gives weight to physical objects, and the Moon's gravity is responsible for sublunar tides in the oceans (the corresponding antipodal tide is caused by the inertia of the Earth and Moon orbiting one another). Gravity also has many important biological functions, helping to guide the growth of plants through the process of gravitropism and influencing the circul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Observable
In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a real-valued "function" on the set of all possible system states. In quantum physics, it is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value. Physically meaningful observables must also satisfy transformation laws that relate observations performed by different observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijective transformations that preserve certain mathematical properties of the space in question. Quantum mechanics In quantum physics, observables manifest as linear operators on a Hilbert space representing the state space of quantum states. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Algebra
In mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions. The geometric product was first briefly mentioned by Hermann Grassmann, who was chiefly interested in developing the closely related exterior algebra. In 1878, William Kingdon Clifford greatly expanded on Grassmann's work to form what are now usually called Clifford algebras in his honor (although Clifford himself chose to call them "geometric algebras"). Clifford defined the Clifford algebra and its product as a unification of the Grassmann algebra and Hamilton's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Theories
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the '' symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge boso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kruskal–Szekeres Coordinates
In general relativity, Kruskal–Szekeres coordinates, named after Martin Kruskal and George Szekeres, are a coordinate system for the Schwarzschild geometry for a black hole. These coordinates have the advantage that they cover the entire spacetime manifold of the maximally extended Schwarzschild solution and are well-behaved everywhere outside the physical singularity. There is no misleading coordinate singularity at the horizon. The Kruskal–Szekeres coordinates also apply to space-time around a spherical object, but in that case do not give a description of space-time inside the radius of the object. Space-time in a region where a star is collapsing into a black hole is approximated by the Kruskal–Szekeres coordinates (or by the Schwarzschild coordinates). The surface of the star remains outside the event horizon in the Schwarzschild coordinates, but crosses it in the Kruskal–Szekeres coordinates. (In any "black hole" which we observe, we see it at a time when its matter h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gullstrand–Painlevé Coordinates
Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial slices are flat. There is no coordinate singularity at the Schwarzschild radius (event horizon). The outgoing ones are simply the time reverse of ingoing coordinates (the time is the proper time along outgoing particles that reach infinity with zero velocity). The solution was proposed independently by Paul Painlevé in 1921 and Allvar Gullstrand in 1922. It was not explicitly shown until 1933 in Lemaître's paper that these solutions were simply coordinate transformations of the usual Schwarzschild solution, although Einstein immediately believed that to be true. Derivation The derivation of GP coordinates requires defining the follow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schwarzschild Metric
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916, and around the same time independently by Johannes Droste, who published his more complete and modern-looking discussion four months after Schwarzschild. According to Birkhoff's theorem, the Schwarzschild metric is the most general spherically symmetric vacuum solution of the Einstein field equations. A Schwarzschild black hole or static black hole is a black hole that has neither electric charge nor angular momentum. A Schwar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contravariant Vector
In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. In modern mathematical notation, the role is sometimes swapped. In physics, a basis is sometimes thought of as a set of reference axes. A change of scale on the reference axes corresponds to a change of units in the problem. For instance, by changing scale from meters to centimeters (that is, ''dividing'' the scale of the reference axes by 100), the components of a measured velocity vector are ''multiplied'' by 100. A vector changes scale ''inversely'' to changes in scale to the reference axes, and consequently is called ''contravariant''. As a result, a vector often has units of distance or distance with other units (as, for example, velocity has units of distance divided by time). In contrast, a covector, also called a ''dual vector'', typically has units of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covariant Vector
In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. In modern mathematical notation, the role is sometimes swapped. In physics, a basis is sometimes thought of as a set of reference axes. A change of scale on the reference axes corresponds to a change of units in the problem. For instance, by changing scale from meters to centimeters (that is, ''dividing'' the scale of the reference axes by 100), the components of a measured velocity vector are ''multiplied'' by 100. A vector changes scale ''inversely'' to changes in scale to the reference axes, and consequently is called ''contravariant''. As a result, a vector often has units of distance or distance with other units (as, for example, velocity has units of distance divided by time). In contrast, a covector, also called a ''dual vector'', typically has units of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spacetime Algebra
In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra . According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime. It is a vector space that allows not only vectors, but also bivectors (directed quantities associated with particular planes, such as areas, or rotations) or blades (quantities associated with particular hyper-volumes) to be combined, as well as rotated, reflected, or Lorentz boosted. It is also the natural parent algebra of spinors in special relativity. These properties allow many of the most important equations in physics to be expressed in particularly simple forms, and can be very helpful towards a more geometric understanding of their meanings. Structure The spacetime algebra may be built up from an orthogonal basis of one time-like vector \gamma_0 and three space-like vectors, \, with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Raising And Lowering Indices
In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions. Vectors, covectors and the metric Mathematical formulation Mathematically vectors are elements of a vector space V over a field K, and for use in physics V is usually defined with K=\mathbb or \mathbb. Concretely, if the dimension n=\text(V) of V is finite, then, after making a choice of basis, we can view such vector spaces as \mathbb^n or \mathbb^n. The dual space is the space of linear functionals mapping V\rightarrow K. Concretely, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V^*:= \text(V,K), so that \alpha \in V^* is a linear map \alpha:V\rightarrow K. Then under a choice of basis \, we can view vectors v\in V as an K^n vector with components v^i (vectors are taken by convention to have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Tensor (general Relativity)
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. Notation and conventions Throughout this article we work with a metric signature that is mostly positive (); see sign convention. The gravitation constant G will be kept explicit. This article employs the Einstein summation convention, where repeated indices are automatically summed over. Definition Mathematically, spacetime is represented by a four-dimensional differentiable manifold M and the metric tensor is given as a covariant, second-degree, symmetric tensor on M, conventionally denoted by g. Moreover, the metric is required to be nondegenera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]