In physics, especially in
multilinear algebra
Multilinear algebra is a subfield of mathematics that extends the methods of linear algebra. Just as linear algebra is built on the concept of a vector and develops the theory of vector spaces, multilinear algebra builds on the concepts of ''p' ...
and
tensor analysis
In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis ...
, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a
change of basis
In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are considere ...
. In modern mathematical notation, the role is sometimes swapped.
In physics, a basis is sometimes thought of as a set of reference axes. A change of scale on the reference axes corresponds to a change of units in the problem. For instance, by changing scale from meters to centimeters (that is, ''dividing'' the scale of the reference axes by 100), the components of a measured
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
vector
Vector most often refers to:
*Euclidean vector, a quantity with a magnitude and a direction
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematic ...
are ''multiplied'' by 100. A vector changes scale ''inversely'' to changes in scale to the reference axes, and consequently is called ''contravariant''. As a result, a vector often has units of distance or distance with other units (as, for example, velocity has units of distance divided by time).
In contrast, a
covector
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers).
If is a vector space over a field , the s ...
, also called a ''dual vector'', typically has units of the inverse of distance or the inverse of distance with other units. For example, a
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
which has units of a spatial
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
, or distance
−1. The components of a covector changes in the ''same way'' as changes to scale of the reference axes, and consequently is called ''covariant''.
A third concept related to covariance and contravariance is
invariance. An example of a physical
observable
In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a real-valued "function" on the set of all possible system states. In quantum ph ...
that does not change with a change of scale on the reference axes is the
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
of a particle, which has units of mass (that is, no units of distance). The single,
scalar
Scalar may refer to:
*Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers
* Scalar (physics), a physical quantity that can be described by a single element of a number field such ...
value of mass is independent of changes to the scale of the reference axes and consequently is called ''invariant''.
Under more general changes in basis:
* A contravariant vector or
tangent vector
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are eleme ...
(often abbreviated simply as ''vector'', such as a
direction vector
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat").
The term ''direction ve ...
or velocity vector) has components that ''contra-vary'' with a change of basis to compensate. That is, the matrix that transforms the vector components must be the inverse of the matrix that transforms the basis vectors. The components of vectors (as opposed to those of covectors) are said to be contravariant. Examples of vectors with ''contravariant components'' include the position of an object relative to an observer, or any derivative of position with respect to time, including velocity,
acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
, and
jerk. In
Einstein notation
In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of ...
(implicit summation over repeated index), contravariant components are denoted with ''upper indices'' as in
*:
* A covariant vector or
cotangent vector
In differential geometry, the cotangent space is a vector space associated with a point x on a smooth (or differentiable) manifold \mathcal M; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, ...
(often abbreviated as ''covector'') has components that ''co-vary'' with a change of basis. That is, the components must be transformed by the same matrix as the change of basis matrix. The components of covectors (as opposed to those of vectors) are said to be covariant. Examples of covariant vectors generally appear when taking a
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
of a function. In
Einstein notation
In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of ...
, covariant components are denoted with ''lower indices'' as in
*:
Curvilinear coordinate system
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inv ...
s, such as
cylindrical
A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.
A cylinder may also be defined as an infini ...
or
spherical coordinates
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the ''radial distance'' of that point from a fixed origin, its ''polar angle'' measu ...
, are often used in physical and geometric problems. Associated with any coordinate system is a natural choice of coordinate basis for vectors based at each point of the space, and covariance and contravariance are particularly important for understanding how the coordinate description of a vector changes by passing from one coordinate system to another.
The terms ''covariant'' and ''contravariant'' were introduced by
James Joseph Sylvester
James Joseph Sylvester (3 September 1814 – 15 March 1897) was an English mathematician. He made fundamental contributions to matrix theory, invariant theory, number theory, partition theory, and combinatorics. He played a leadership ro ...
in 1851 in the context of associated algebraic forms theory.
Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
s are objects in
multilinear algebra
Multilinear algebra is a subfield of mathematics that extends the methods of linear algebra. Just as linear algebra is built on the concept of a vector and develops the theory of vector spaces, multilinear algebra builds on the concepts of ''p' ...
that can have aspects of both covariance and contravariance.
In the lexicon of
category theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
,
covariance and contravariance are properties of
functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s; unfortunately, it is the lower-index objects (covectors) that generically have
pullback
In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward.
Precomposition
Precomposition with a function probably provides the most elementary notion of pullback: in ...
s, which are contravariant, while the upper-index objects (vectors) instead have
pushforward
The notion of pushforward in mathematics is "dual" to the notion of pullback, and can mean a number of different but closely related things.
* Pushforward (differential), the differential of a smooth map between manifolds, and the "pushforward" op ...
s, which are covariant. This terminological conflict may be avoided by calling contravariant functors "cofunctors"—in accord with the "covector" terminology, and continuing the tradition of treating vectors as the concept and covectors as the coconcept.
Introduction
In physics, a vector typically arises as the outcome of a measurement or series of measurements, and is represented as a list (or
tuple
In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
) of numbers such as
:
The numbers in the list depend on the choice of
coordinate system
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
. For instance, if the vector represents position with respect to an observer (
position vector
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents the position of a point ''P'' in space in relation to an arbitrary reference origin ''O''. Usually denoted x, r, or s ...
), then the coordinate system may be obtained from a system of rigid rods, or reference axes, along which the components ''v''
1, ''v''
2, and ''v''
3 are measured. For a vector to represent a geometric object, it must be possible to describe how it looks in any other coordinate system. That is to say, the components of the vectors will ''transform'' in a certain way in passing from one coordinate system to another.
A ''contravariant vector'' has components that "transform as the coordinates do" under changes of coordinates (and so inversely to the transformation of the reference axes), including
rotation
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
and dilation.
The vector itself does not change under these operations; instead, the components of the vector change in a way that cancels the change in the spatial axes, in the same way that coordinates change. In other words, if the reference axes were rotated in one direction, the component representation of the vector would rotate in exactly the opposite way. Similarly, if the reference axes were stretched in one direction, the components of the vector, like the coordinates, would reduce in an exactly compensating way. Mathematically, if the coordinate system undergoes a transformation described by an
invertible matrix
In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that
:\mathbf = \mathbf = \mathbf_n \
where denotes the -by- identity matrix and the multiplicati ...
''M'', so that a
coordinate vector
In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. An easy example may be a position such as (5, 2, 1) in a 3-dimensiona ...
x is transformed to
, then a contravariant vector v must be similarly transformed via
. This important requirement is what distinguishes a contravariant vector from any other triple of physically meaningful quantities. For example, if ''v'' consists of the ''x''-, ''y''-, and ''z''-components of
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
, then ''v'' is a contravariant vector: if the coordinates of space are stretched, rotated, or twisted, then the components of the velocity transform in the same way. Examples of contravariant vectors include
position
Position often refers to:
* Position (geometry), the spatial location (rather than orientation) of an entity
* Position, a job or occupation
Position may also refer to:
Games and recreation
* Position (poker), location relative to the dealer
* ...
,
displacement
Displacement may refer to:
Physical sciences
Mathematics and Physics
*Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path ...
,
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
,
acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
,
momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
, and
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
.
By contrast, a ''covariant vector'' has components that change oppositely to the coordinates or, equivalently, transform like the reference axes. For instance, the components of the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
vector of a function
:
transform like the reference axes themselves.
Definition
The general formulation of covariance and contravariance refer to how the components of a coordinate vector transform under a
change of basis
In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are considere ...
(
passive transformation). Thus let ''V'' be a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
of dimension ''n'' over a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
of
scalars
Scalar may refer to:
*Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers
*Scalar (physics), a physical quantity that can be described by a single element of a number field such a ...
''S'', and let each of and be a
basis
Basis may refer to:
Finance and accounting
* Adjusted basis, the net cost of an asset after adjusting for various tax-related items
*Basis point, 0.01%, often used in the context of interest rates
* Basis trading, a trading strategy consisting ...
of ''V''.
[A basis f may here profitably be viewed as a ]linear isomorphism
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
from R''n'' to ''V''. Regarding f as a row vector whose entries are the elements of the basis, the associated linear isomorphism is then Also, let the
change of basis
In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are considere ...
from f to f′ be given by
for some
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is ...
''n''×''n'' matrix ''A'' with entries
.
Here, each vector ''Y''
''j'' of the f′ basis is a linear combination of the vectors ''X''
''i'' of the f basis, so that
:
Contravariant transformation
A vector
in ''V'' is expressed uniquely as a
linear combination of the elements
of the f basis as
where ''v''
''fare elements of the field ''S'' known as the components of ''v'' in the f basis. Denote the
column vector
In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example,
\boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end.
Similarly, a row vector is a 1 \times n matrix for some n, c ...
of components of ''v'' by v
''f
:
so that () can be rewritten as a matrix product
:
The vector ''v'' may also be expressed in terms of the f′ basis, so that
:
However, since the vector ''v'' itself is invariant under the choice of basis,
:
The invariance of ''v'' combined with the relationship () between f and f′ implies that
:
giving the transformation rule
:
In terms of components,
: