Multilinear Algebra
Multilinear algebra is a subfield of mathematics that extends the methods of linear algebra. Just as linear algebra is built on the concept of a vector and develops the theory of vector spaces, multilinear algebra builds on the concepts of ''p''-vectors and multivectors with Grassmann algebras. Origin In a vector space of dimension ''n'', normally only vectors are used. However, according to Hermann Grassmann and others, this presumption misses the complexity of considering the structures of pairs, triplets, and general multi-vectors. With several combinatorial possibilities, the space of multi-vectors has 2''n'' dimensions. The abstract formulation of the determinant is the most immediate application. Multilinear algebra also has applications in the mechanical study of material response to stress and strain with various moduli of elasticity. This practical reference led to the use of the word tensor, to describe the elements of the multilinear space. The extra structure in a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elwin Bruno Christoffel
Elwin Bruno Christoffel (; 10 November 1829 – 15 March 1900) was a German mathematician and physicist. He introduced fundamental concepts of differential geometry, opening the way for the development of tensor calculus, which would later provide the mathematical basis for general relativity. Life Christoffel was born on 10 November 1829 in Montjoie (now Monschau) in Prussia in a family of cloth merchants. He was initially educated at home in languages and mathematics, then attended the Jesuit Gymnasium and the Friedrich-Wilhelms Gymnasium in Cologne. In 1850 he went to the University of Berlin, where he studied mathematics with Gustav Dirichlet (which had a strong influence over him) among others, as well as attending courses in physics and chemistry. He received his doctorate in Berlin in 1856 for a thesis on the motion of electricity in homogeneous bodies written under the supervision of Martin Ohm, Ernst Kummer and Heinrich Gustav Magnus. After receiving his doctorate, Ch ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product Topology
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product. Definition Throughout, I will be some non-empty index set and for every index i \in I, let X_i be a topological space. Denote the Cartesian product of the sets X_i by X := \prod X_ := \prod_ X_i and for every index i \in I, denote the i-th by \begin p_i :\;&& \prod_ X_j &&\;\to\; & X_i \\ .3ex && \left(x_j\r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homology (mathematics)
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w. An element of the form v \otimes w is called the tensor product of and . An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for and , a basis of V \otimes W is formed by all tensor products of a basis element of and a basis element of . The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space factors uniquely through a linear map V\otimes W\to Z (see Universal property). Tenso ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other 'tan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nicolas Bourbaki
Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure (Paris), École normale supérieure - PSL (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook in mathematical analysis, analysis. Over time the project became much more ambitious, growing into a large series of textbooks published under the Bourbaki name, meant to treat modern pure mathematics. The series is known collectively as the ''Éléments de mathématique'' (''Elements of Mathematics''), the group's central work. Topics treated in the series include set theory, abstract algebra, topology, analysis, Lie groups and Lie algebras. Bourbaki was founded in response to the effects of the First World War which caused the death of a generation of French mathematicians; as a result, young university instructors were forced to use dated texts. While teaching at the University of Strasbourg, Henri Carta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precession Of The Perihelion Of Mercury
Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954. A more accurate program starting in 1959 tested general relativity in the weak gravitational field limit, severely limiting possible deviations from the theory. In the 1970s, scientists began to make additional tests, starting with Irwin Shapiro's measurement of the relativistic time ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Albert Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory of relativity, but he also made important contributions to the development of the theory of quantum mechanics. Relativity and quantum mechanics are the two pillars of modern physics. His mass–energy equivalence formula , which arises from relativity theory, has been dubbed "the world's most famous equation". His work is also known for its influence on the philosophy of science. He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect", a pivotal step in the development of quantum theory. His intellectual achievements and originality resulted in "Einstein" becoming synonymous with "genius". In 1905, a year sometimes described as his ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Michele Besso
Michele Angelo Besso (Riesbach, 25 May 1873 – Geneva, 15 March 1955) was a Swiss-Italian engineer best known for working closely with Albert Einstein. Biography Besso was born in Riesbach from a family of Italian Jewish (Sephardi) descent. He was a close friend of Albert Einstein during his years at the Federal Polytechnic Institute in Zurich, (today known as ETH Zurich) and then at the patent office in Bern, where Einstein helped him to get a job. Besso is credited with introducing Einstein to the works of Ernst Mach, the sceptical critic of physics who influenced Einstein's approach to the discipline. Einstein called Besso "the best sounding board in Europe" for scientific ideas. In Einstein's original paper on special relativity, he ended the paper stating, "In conclusion, let me note that my friend and colleague M. Besso steadfastly stood by me in my work on the problem here discussed, and that I am indebted to him for many a valuable suggestion." Besso died in Geneva, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |