HOME

TheInfoList



OR:

In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of
planets A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young ...
, stars,
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
, and even light.
On Earth ''On Earth'' is the second and final studio album by American singer Traci Braxton. The album was released on August 24, 2018, through Soul World Entertainment. The album was preceded by the release of one single—"Lifeline" and one promotional ...
, gravity gives weight to
physical object In common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a defined contiguous boundary in three-dimensional space. The boundary must be defined and identified by t ...
s, and the Moon's gravity is responsible for sublunar tides in the oceans (the corresponding antipodal tide is caused by the inertia of the Earth and Moon orbiting one another). Gravity also has many important biological functions, helping to guide the growth of plants through the process of gravitropism and influencing the
circulation Circulation may refer to: Science and technology * Atmospheric circulation, the large-scale movement of air * Circulation (physics), the path integral of the fluid velocity around a closed curve in a fluid flow field * Circulatory system, a bio ...
of fluids in multicellular organisms. Investigation into the effects of weightlessness has shown that gravity may play a role in immune system function and
cell differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellula ...
within the human body. The gravitational attraction between the original gaseous matter in the Universe allowed it to coalesce and form stars which eventually condensed into galaxies, so gravity is responsible for many of the large-scale structures in the Universe. Gravity has an infinite range, although its effects become weaker as objects get farther away. Gravity is most accurately described by the general theory of relativity (proposed by
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
in 1915), which describes gravity not as a force, but as the
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
of spacetime, caused by the uneven distribution of mass, and causing masses to move along
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
lines. The most extreme example of this curvature of spacetime is a
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
, from which nothing—not even light—can escape once past the black hole's event horizon. However, for most applications, gravity is well approximated by Newton's law of universal gravitation, which describes gravity as a
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
causing any two bodies to be attracted toward each other, with magnitude
proportional Proportionality, proportion or proportional may refer to: Mathematics * Proportionality (mathematics), the property of two variables being in a multiplicative relation to a constant * Ratio, of one quantity to another, especially of a part compare ...
to the product of their masses and inversely proportional to the square of the distance between them: F = G \frac, where is the force, and are the masses of the objects interacting, is the distance between the centers of the masses and is the
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
. Current models of particle physics imply that the earliest instance of gravity in the Universe, possibly in the form of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
, supergravity or a gravitational singularity, along with ordinary space and time, developed during the Planck epoch (up to 10−43 seconds after the birth of the Universe), possibly from a primeval state, such as a false vacuum, quantum vacuum or virtual particle, in a currently unknown manner. – discusses " Planck time" and " Planck era" at the very beginning of the Universe Scientists are currently working to develop a theory of gravity consistent with quantum mechanics, a
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
theory, which would allow gravity to be united in a common mathematical framework (a theory of everything) with the other three fundamental interactions of physics.


History


Ancient world

The nature and mechanism of gravity was explored by a wide range of ancient scholars. In
Greece Greece,, or , romanized: ', officially the Hellenic Republic, is a country in Southeast Europe. It is situated on the southern tip of the Balkans, and is located at the crossroads of Europe, Asia, and Africa. Greece shares land borders wit ...
,
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical Greece, Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatet ...
believed that objects fell towards the Earth because the Earth was the center of the Universe and attracted all of the mass in the Universe towards it. He also thought that the speed of a falling object should increase with its weight, a conclusion which was later shown to be false. While Aristotle's view was widely accepted throughout Ancient Greece, there were other thinkers such as Plutarch who correctly predicted that the attraction of gravity was not unique to the Earth. Although he didn't understand gravity as a force, the ancient Greek philosopher
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
discovered the center of gravity of a triangle. He also postulated that if two equal weights did not have the same center of gravity, the center of gravity of the two weights together would be in the middle of the line that joins their centers of gravity. In India, the mathematician-astronomer Aryabhata first identified gravity to explain why objects are not driven away from the Earth by the
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel ...
of the planet's rotation. Later, in the seventh century CE,
Brahmagupta Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical trea ...
proposed the idea that gravity is an attractive force which draws objects to the Earth and used the term '' gurutvākarṣaṇ'' to describe it. In the ancient Middle East, gravity was a topic of fierce debate. The Persian intellectual Al-Biruni believed that the force of gravity was not unique to the Earth, and he correctly assumed that other
heavenly bodies "Heavenly Bodies" is a song written by Elaine Lifton, Gloria Nissenson and Lee Ritenour, and recorded by American country music artist Earl Thomas Conley. It was released in May 1982 as the first single from the album '' Somewhere Between Right ...
should exert a gravitational attraction as well. In contrast, Al-Khazini held the same position as Aristotle that all matter in the Universe is attracted to the center of the Earth.


Scientific revolution

In the mid-16th century, various European scientists experimentally disproved the Aristotelian notion that heavier objects fall at a faster rate. In particular, the Spanish Dominican priest Domingo de Soto wrote in 1551 that bodies in free fall uniformly accelerate. De Soto may have been influenced by earlier experiments conducted by other Dominican priests in Italy, including those by
Benedetto Varchi Benedetto Varchi (; 1502/15031565) was an Italian humanist, historian, and poet. Biography Born in Florence to a family that had originated at Montevarchi, he frequented the neoplatonic academy that Bernardo Rucellai organized in his garden, the ...
, Francesco Beato, Luca Ghini, and Giovan Bellaso which contradicted Aristotle's teachings on the fall of bodies. The mid-16th century Italian physicist Giambattista Benedetti published papers claiming that, due to specific gravity, objects made of the same material but with different masses would fall at the same speed. With the 1586
Delft tower experiment In 1586, scientists Simon Stevin and Jan Cornets de Groot conducted an early scientific experiment on the effects of gravity. The experiment, which established that objects of identical size and different mass fall at the same speed, was conducted ...
, the Flemish physicist
Simon Stevin Simon Stevin (; 1548–1620), sometimes called Stevinus, was a Flemish mathematician, scientist and music theorist. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated vario ...
observed that two cannonballs of differing sizes and weights fell at the same rate when dropped from a tower. Finally, in the late 16th century, Galileo Galilei's careful measurements of balls rolling down inclines allowed him to firmly establish that gravitational acceleration is the same for all objects. Galileo postulated that air resistance is the reason that objects with a low density and high
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
fall more slowly in an atmosphere. In 1604, Galileo correctly hypothesized that the distance of a falling object is proportional to the square of the time elapsed. This was later confirmed by Italian scientists Jesuits Grimaldi and Riccioli between 1640 and 1650. They also calculated the magnitude of the Earth's gravity by measuring the oscillations of a pendulum.


Newton's theory of gravitation

In 1684, Newton sent a manuscript to Edmond Halley titled '' De motu corporum in gyrum ('On the motion of bodies in an orbit')'', which provided a physical justification for
Kepler's laws of planetary motion In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits ...
. Halley was impressed by the manuscript and urged Newton to expand on it, and a few years later Newton published a groundbreaking book called ''
Philosophiæ Naturalis Principia Mathematica (English: ''Mathematical Principles of Natural Philosophy'') often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Latin and ...
'' (''Mathematical Principles of Natural Philosophy''). In this book, Newton described gravitation as a universal force, and claimed that "the forces which keep the planets in their orbs must ereciprocally as the squares of their distances from the centers about which they revolve." This statement was later condensed into the following inverse-square law: F = G \frac, where is the force, and are the masses of the objects interacting, is the distance between the centers of the masses and is the
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
. Newton's ''Principia'' was well-received by the scientific community, and his law of gravitation quickly spread across the European world. More than a century later, in 1821, his theory of gravitation rose to even greater prominence when it was used to predict the existence of
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
. In that year, the French astronomer Alexis Bouvard used this theory to create a table modeling the orbit of Uranus, which was shown to differ significantly from the planet's actual trajectory. In order to explain this discrepancy, many astronomers speculated that there might be a large object beyond the orbit of Uranus which was disrupting its orbit. In 1846, the astronomers John Couch Adams and Urbain Le Verrier independently used Newton's law to predict Neptune's location in the night sky, and the planet was discovered there within a day.


General relativity

Eventually, astronomers noticed an eccentricity in the orbit of the planet
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
which could not be explained by Newton's theory: the perihelion of the orbit was increasing by about 42.98 arcseconds per century. The most obvious explanation for this discrepancy was an as-yet-undiscovered celestial body (such as a planet orbiting the Sun even closer than Mercury), but all efforts to find such a body turned out to be fruitless. Finally, in 1915,
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
developed a theory of general relativity which was able to accurately model Mercury's orbit. In general relativity, the effects of gravitation are ascribed to spacetime
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
instead of a force. Einstein began to toy with this idea in the form of the
equivalence principle In the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body ...
, a discovery which he later described as "the happiest thought of my life." In this theory, free fall is considered to be equivalent to inertial motion, meaning that free-falling inertial objects are accelerated relative to non-inertial observers on the ground. In contrast to Newtonian physics, Einstein believed that it was possible for this acceleration to occur without any force being applied to the object. Einstein proposed that spacetime is curved by matter, and that free-falling objects are moving along locally straight paths in curved spacetime. These straight paths are called geodesics. As in Newton's first law of motion, Einstein believed that a force applied to an object would cause it to deviate from a geodesic. For instance, people standing on the surface of the Earth are prevented from following a geodesic path because the mechanical resistance of the Earth exerts an upward force on them. This explains why moving along the geodesics in spacetime is considered inertial. Einstein's description of gravity was quickly accepted by the majority of physicists, as it was able to explain a wide variety of previously baffling experimental results. In the coming years, a wide range of experiments provided additional support for the idea of general relativity. Today, Einstein's theory of relativity is used for all gravitational calculations where absolute precision is desired, although Newton's inverse-square law continues to be a useful and fairly accurate approximation.


Modern research

In
modern physics Modern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity and general ...
, general relativity remains the framework for the understanding of gravity. Physicists continue to work to find solutions to the Einstein field equations that form the basis of general relativity, while some scientists have speculated that general relativity may not be applicable at all in certain scenarios.


Einstein field equations

The Einstein field equations are a
system A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment (systems), environment, is described by its boundaries, ...
of 10 partial differential equations which describe how matter affects the curvature of spacetime. The system is often expressed in the form G_ + \Lambda g_ = \kappa T_, where is the Einstein tensor, is the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
, is the
stress–energy tensor The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress ...
, is the cosmological constant, G is the Newtonian constant of gravitation and c is the speed of light. The constant \kappa = \frac is referred to as the Einstein gravitational constant. A major area of research is the discovery of exact solutions to the Einstein field equations. Solving these equations amounts to calculating a precise value for the metric tensor (which defines the curvature and geometry of spacetime) under certain physical conditions. There is no formal definition for what constitutes such solutions, but most scientists agree that they should be expressable using elementary functions or linear differential equations. Some of the most notable solutions of the equations include: * The Schwarzschild solution, which describes spacetime surrounding a
spherically symmetric In geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the ...
non- rotating uncharged massive object. For compact enough objects, this solution generated a
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
with a central singularity. At points far away from the central mass, the accelerations predicted by the Schwarzschild solution are practically identical to those predicted by Newton's theory of gravity. * The Reissner–Nordström solution, which analyzes a non-rotating spherically symmetric object with charge and was independently discovered by several different researchers between 1916 and 1921. In some cases, this solution can predict the existence of black holes with double
event horizons In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact obj ...
. * The Kerr solution, which generalizes the Schwarzchild solution to rotating massive objects. Because of the difficulty of factoring in the effects of rotation into the Einstein field equations, this solution was not discovered until 1963. * The Kerr–Newman solution for charged, rotating massive objects. This solution was derived in 1964, using the same technique of complex coordinate transformation that was used for the Kerr solution. * The cosmological Friedmann–Lemaître–Robertson–Walker solution, discovered in 1922 by Alexander Friedmann and then confirmed in 1927 by Georges Lemaître. This solution was revolutionary for predicting the
expansion of the Universe The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
, which was confirmed seven years later after a series of measurements by
Edwin Hubble Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an Americans, American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology. Hubble proved that many objects ...
. It even showed that general relativity was incompatible with a static universe, and Einstein later conceded that he had been wrong to design his field equations to account for a Universe that was not expanding. Today, there remain many important situations in which the Einstein field equations have not been solved. Chief among these is the two-body problem, which concerns the geometry of spacetime around two mutually interacting massive objects (such as the Sun and the Earth, or the two stars in a binary star system). The situation gets even more complicated when considering the interactions of three or more massive bodies (the "''n''-body problem"), and some scientists suspect that the Einstein field equations will never be solved in this context. However, it is still possible to construct an approximate solution to the field equations in the ''n''-body problem by using the technique of
post-Newtonian expansion In general relativity, the post-Newtonian expansions (PN expansions) are used for finding an approximate solution of the Einstein field equations for the metric tensor. The approximations are expanded in small parameters which express orders of ...
. In general, the extreme nonlinearity of the Einstein field equations makes it difficult to solve them in all but the most specific cases.


Gravity and quantum mechanics

Despite its success in predicting the effects of gravity at large scales, general relativity is ultimately incompatible with quantum mechanics. This is because general relativity describes gravity as a smooth, continuous distortion of spacetime, while quantum mechanics holds that all forces arise from the exchange of discrete particles known as
quanta Quanta is the plural of quantum. Quanta may also refer to: Organisations * Quanta Computer, a Taiwan-based manufacturer of electronic and computer equipment * Quanta Display Inc., a Taiwanese TFT-LCD panel manufacturer acquired by AU Optronic ...
. This contradiction is especially vexing to physicists because the other three fundamental forces (strong force, weak force and electromagnetism) were reconciled with a quantum framework decades ago. As a result, modern researchers have begun to search for a theory that could unite both gravity and quantum mechanics under a more general framework. One path is to describe gravity in the framework of
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, which has been successful to accurately describe the other fundamental interactions. The electromagnetic force arises from an exchange of virtual photons, where the QFT description of gravity is that there is an exchange of virtual gravitons. This description reproduces general relativity in the classical limit. However, this approach fails at short distances of the order of the Planck length, where a more complete theory of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
(or a new approach to quantum mechanics) is required.


Tests of general relativity

Testing the predictions of general relativity has historically been difficult, because they are almost identical to the predictions of Newtonian gravity for small energies and masses. Still, since its development, an ongoing series of experimental results have provided support for the theory: * In 1919, the British astrophysicist
Arthur Eddington Sir Arthur Stanley Eddington (28 December 1882 – 22 November 1944) was an English astronomer, physicist, and mathematician. He was also a philosopher of science and a populariser of science. The Eddington limit, the natural limit to the lumin ...
was able to confirm the predicted gravitational lensing of light during that year's solar eclipse. Eddington measured starlight deflections twice those predicted by Newtonian corpuscular theory, in accordance with the predictions of general relativity. Although Eddington's analysis was later disputed, this experiment made Einstein famous almost overnight and caused general relativity to become widely accepted in the scientific community. * In 1959, American physicists Robert Pound and Glen Rebka performed an experiment in which they used gamma rays to confirm the prediction of gravitational time dilation. By sending the rays down a 74-foot tower and measuring their frequency at the bottom, the scientists confirmed that light is redshifted as it moves towards a source of gravity. The observed redshift also supported the idea that time runs more slowly in the presence of a gravitational field. * The time delay of light passing close to a massive object was first identified by
Irwin I. Shapiro Irwin Ira Shapiro is an American astrophysicist and Timken University Professor at Harvard University. He has been a professor at Harvard since 1982. He was the director of the Center for Astrophysics Harvard & Smithsonian from 1982 to 20 ...
in 1964 in interplanetary spacecraft signals. *In 1971, scientists discovered the first-ever black hole in the galaxy Cygnus. The black hole was detected because it was emitting bursts of x-rays as it consumed a smaller star, and it came to be known as Cygnus X-1. This discovery confirmed yet another prediction of general relativity, because Einstein's equations implied that light could not escape from a sufficiently large and compact object. *General relativity states that gravity acts on light and matter equally, meaning that a sufficiently massive object could warp light around it and create a gravitational lens. This phenomenon was first confirmed by observation in 1979 using the 2.1 meter telescope at Kitt Peak National Observatory in Arizona, which saw two mirror images of the same quasar whose light had been bent around the galaxy YGKOW G1. *
Frame dragging Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses cau ...
, the idea that a rotating massive object should twist spacetime around it, was confirmed by Gravity Probe B results in 2011. *In 2015, the LIGO observatory detected faint gravitational waves, the existence of which had been predicted by general relativity. Scientists believe that the waves emanated from a black hole merger that occurred 1.5 billion light-years away.


Specifics


Earth's gravity

Every planetary body (including the Earth) is surrounded by its own gravitational field, which can be conceptualized with Newtonian physics as exerting an attractive force on all objects. Assuming a spherically symmetrical planet, the strength of this field at any given point above the surface is proportional to the planetary body's mass and inversely proportional to the square of the distance from the center of the body. The strength of the gravitational field is numerically equal to the acceleration of objects under its influence. The rate of acceleration of falling objects near the Earth's surface varies very slightly depending on latitude, surface features such as mountains and ridges, and perhaps unusually high or low sub-surface densities. For purposes of weights and measures, a
standard gravity The standard acceleration due to gravity (or standard acceleration of free fall), sometimes abbreviated as standard gravity, usually denoted by or , is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. ...
value is defined by the International Bureau of Weights and Measures, under the
International System of Units The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. E ...
(SI). The force of gravity on Earth is the resultant (vector sum) of two forces: (a) The gravitational attraction in accordance with Newton's universal law of gravitation, and (b) the centrifugal force, which results from the choice of an earthbound, rotating frame of reference. The force of gravity is weakest at the equator because of the
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel ...
caused by the Earth's rotation and because points on the equator are furthest from the center of the Earth. The force of gravity varies with latitude and increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles. Canada's
Hudson Bay Hudson Bay ( crj, text=ᐐᓂᐯᒄ, translit=Wînipekw; crl, text=ᐐᓂᐹᒄ, translit=Wînipâkw; iu, text=ᑲᖏᖅᓱᐊᓗᒃ ᐃᓗᐊ, translit=Kangiqsualuk ilua or iu, text=ᑕᓯᐅᔭᕐᔪᐊᖅ, translit=Tasiujarjuaq; french: b ...
has less gravity than any place on Earth.


Origin

The earliest gravity (possibly in the form of quantum gravity, supergravity or a gravitational singularity), along with ordinary space and time, developed during the Planck epoch (up to 10−43 seconds after the birth of the Universe), possibly from a primeval state (such as a false vacuum, quantum vacuum or virtual particle), in a currently unknown manner.


Gravitational radiation

General relativity predicts that energy can be transported out of a system through gravitational radiation. The first indirect evidence for gravitational radiation was through measurements of the Hulse–Taylor binary in 1973. This system consists of a pulsar and neutron star in orbit around one another. Its orbital period has decreased since its initial discovery due to a loss of energy, which is consistent for the amount of energy loss due to gravitational radiation. This research was awarded the Nobel Prize in Physics in 1993. The first direct evidence for gravitational radiation was measured on 14 September 2015 by the LIGO detectors. The gravitational waves emitted during the collision of two black holes 1.3 billion light years from Earth were measured. This observation confirms the theoretical predictions of Einstein and others that such waves exist. It also opens the way for practical observation and understanding of the nature of gravity and events in the Universe including the Big Bang. Neutron star and
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
formation also create detectable amounts of gravitational radiation. This research was awarded the Nobel Prize in physics in 2017.


Speed of gravity

In December 2012, a research team in China announced that it had produced measurements of the phase lag of Earth tides during full and new moons which seem to prove that the speed of gravity is equal to the speed of light. This means that if the Sun suddenly disappeared, the Earth would keep orbiting the vacant point normally for 8 minutes, which is the time light takes to travel that distance. The team's findings were released in the
Chinese Science Bulletin ''Science Bulletin'' () is a multidisciplinary scientific journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. It is published by Elsevier on behalf of Science in China Press and focuses on ...
in February 2013. In October 2017, the LIGO and Virgo detectors received gravitational wave signals within 2 seconds of gamma ray satellites and optical telescopes seeing signals from the same direction. This confirmed that the speed of gravitational waves was the same as the speed of light.


Anomalies and discrepancies

There are some observations that are not adequately accounted for, which may point to the need for better theories of gravity or perhaps be explained in other ways. * Extra-fast stars: Stars in galaxies follow a distribution of velocities where stars on the outskirts are moving faster than they should according to the observed distributions of normal matter. Galaxies within galaxy clusters show a similar pattern. Dark matter, which would interact through gravitation but not electromagnetically, would account for the discrepancy. Various modifications to Newtonian dynamics have also been proposed. * Flyby anomaly: Various spacecraft have experienced greater acceleration than expected during gravity assist maneuvers. * Accelerating expansion: The metric expansion of space seems to be speeding up. Dark energy has been proposed to explain this. A recent alternative explanation is that the geometry of space is not homogeneous (due to clusters of galaxies) and that when the data are reinterpreted to take this into account, the expansion is not speeding up after all, however this conclusion is disputed. * Anomalous increase of the
astronomical unit The astronomical unit (symbol: au, or or AU) is a unit of length, roughly the distance from Earth to the Sun and approximately equal to or 8.3 light-minutes. The actual distance from Earth to the Sun varies by about 3% as Earth orbi ...
: Recent measurements indicate that planetary orbits are widening faster than if this were solely through the Sun losing mass by radiating energy. * Extra energetic photons: Photons travelling through galaxy clusters should gain energy and then lose it again on the way out. The accelerating expansion of the Universe should stop the photons returning all the energy, but even taking this into account photons from the cosmic microwave background radiation gain twice as much energy as expected. This may indicate that gravity falls off faster than inverse-squared at certain distance scales. * Extra massive hydrogen clouds: The spectral lines of the Lyman-alpha forest suggest that hydrogen clouds are more clumped together at certain scales than expected and, like dark flow, may indicate that gravity falls off slower than inverse-squared at certain distance scales.


Alternative theories


Historical alternative theories

*
Aristotelian theory of gravity Aristotelian physics is the form of natural science described in the works of the Greek philosopher Aristotle (384–322 BC). In his work ''Physics'', Aristotle intended to establish general principles of change that govern all natural bodies, b ...
* Le Sage's theory of gravitation (1784) also called LeSage gravity but originally proposed by Fatio and further elaborated by Georges-Louis Le Sage, based on a fluid-based explanation where a light gas fills the entire Universe. * Ritz's theory of gravitation, ''Ann. Chem. Phys.'' 13, 145, (1908) pp. 267–271, Weber–Gauss electrodynamics applied to gravitation. Classical advancement of perihelia. *
Nordström's theory of gravitation In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually ''two'' distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 19 ...
(1912, 1913), an early competitor of general relativity. *
Kaluza Klein theory Kaluza may refer to: * Dariusz Kałuża (born 1967), Polish clergyman * Józef Kałuża (1896–1944), Polish footballer * Max Kaluza (1856–1921), German scholar * Otylia Tabacka-Kałuża (1907–1981), Polish middle-distance runner * Renata K ...
(1921) *
Whitehead's theory of gravitation In theoretical physics, Whitehead's theory of gravitation was introduced by the mathematician and philosopher Alfred North Whitehead in 1922. While never broadly accepted, at one time it was a scientifically plausible alternative to general relati ...
(1922), another early competitor of general relativity.


Modern alternative theories

* Brans–Dicke theory of gravity (1961) *
Induced gravity Induced gravity (or emergent gravity) is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose ...
(1967), a proposal by Andrei Sakharov according to which general relativity might arise from quantum field theories of matter *
String theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
(late 1960s) * ƒ(R) gravity (1970) * Horndeski theory (1974) * Supergravity (1976) * In the modified Newtonian dynamics (MOND) (1981),
Mordehai Milgrom Mordehai "Moti" Milgrom is an Israeli physicist and professor in the department of Particle Physics and Astrophysics at the Weizmann Institute in Rehovot, Israel. Biography He received his B.Sc. degree from the Hebrew University of Jerusalem in 1 ...
proposes a modification of Newton's second law of motion for small accelerations * The self-creation cosmology theory of gravity (1982) by G.A. Barber in which the Brans–Dicke theory is modified to allow mass creation *
Loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attem ...
(1988) by
Carlo Rovelli Carlo Rovelli (born May 3, 1956) is an Italian theoretical physicist and writer who has worked in Italy, the United States and, since 2000, in France. He is also currently a Distinguished Visiting Research Chair at the Perimeter Institute, and c ...
, Lee Smolin, and Abhay Ashtekar *
Nonsymmetric gravitational theory In theoretical physics, the nonsymmetric gravitational theory (NGT) of John Moffat is a classical theory of gravitation that tries to explain the observation of the flat rotation curves of galaxies. In general relativity, the gravitational fiel ...
(NGT) (1994) by John Moffat * Tensor–vector–scalar gravity (TeVeS) (2004), a relativistic modification of MOND by Jacob Bekenstein * Chameleon theory (2004) by Justin Khoury and
Amanda Weltman Amanda Weltman (born 1979) is a South African theoretical physicist. She is known for co-authoring a paper proposing the "chameleon theory" to explain the existence of dark energy. She is currently a researcher at the University of Cape Town. Ed ...
. * Pressuron theory (2013) by
Olivier Minazzoli Olivier is the French form of the given name Oliver. It may refer to: * Olivier (given name), a list of people and fictional characters * Olivier (surname), a list of people * Château Olivier, a Bordeaux winery *Olivier, Louisiana, a rural popul ...
and Aurélien Hees. * Conformal gravity * Gravity as an entropic force, gravity arising as an emergent phenomenon from the thermodynamic concept of entropy. *In the
superfluid vacuum theory Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is viewed as superfluid or as a Bose–Einstei ...
the gravity and curved spacetime arise as a collective excitation mode of non-relativistic background superfluid. * Massive gravity, a theory where gravitons and gravitational waves have a non-zero mass


See also

* Anti-gravity, the idea of neutralizing or repelling gravity * Artificial gravity * Equations for a falling body * Escape velocity ** Atmospheric escape * Gauss's law for gravity * Gravitational potential *
Micro-g environment The term micro-g environment (also μg, often referred to by the term microgravity) is more or less synonymous with the terms ''weightlessness'' and ''zero-g'', but emphasising that g-forces are never exactly zero—just very small (on the I ...
, also called microgravity * Newton's laws of motion *
Standard gravitational parameter In celestial mechanics, the standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of the bodies. For two bodies the parameter may be expressed as G(m1+m2), or as GM when ...
* Weightlessness


Footnotes


References

* * *


Further reading

* *


External links


The Feynman Lectures on Physics Vol. I Ch. 7: The Theory of Gravitation
* * {{Authority control Fundamental interactions Acceleration Articles containing video clips Empirical laws