HOME
*





Frequency Scaling
In computer architecture, frequency scaling (also known as frequency ramping) is the technique of increasing a processor's frequency so as to enhance the performance of the system containing the processor in question. Frequency ramping was the dominant force in commodity processor performance increases from the mid-1980s until roughly the end of 2004. The effect of processor frequency on computer speed can be seen by looking at the equation for computer program runtime: : \mathrm = \frac \times \frac \times \frac , where instructions per program is the total instructions being executed in a given program, cycles per instruction is a program-dependent, architecture-dependent average value, and time per cycle is by definition the inverse of processor frequency. An increase in frequency thus decreases runtime. However, power consumption in a chip is given by the equation : P = C \times V^2 \times F, where ''P'' is power consumption, ''C'' is the capacitance being switched per cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Architecture
In computer engineering, computer architecture is a description of the structure of a computer system made from component parts. It can sometimes be a high-level description that ignores details of the implementation. At a more detailed level, the description may include the instruction set architecture design, microarchitecture design, logic design, and implementation. History The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine. When building the computer Z1 in 1936, Konrad Zuse described in two patent applications for his future projects that machine instructions could be stored in the same storage used for data, i.e., the stored-program concept. Two other early and important examples are: * John von Neumann's 1945 paper, First Draft of a Report on the EDVAC, which described an organization of logical elements; and *Alan Turing's more detailed ''Proposed Electronic Calculator'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parallel Scaling
Parallel is a geometric term of location which may refer to: Computing * Parallel algorithm * Parallel computing * Parallel metaheuristic * Parallel (software), a UNIX utility for running programs in parallel * Parallel Sysplex, a cluster of IBM mainframes * Parallel communication * Parallel port * Parallel ATA * Parallel Computers, Inc., an American computer manufacturer of the 1980s Mathematics and science * Parallel circuits, as opposed to series * Parallel (geometry) *Parallel (operator), mathematical function used in electrical engineering * Parallel postulate * Parallel evolution * Parallel transport * Parallel manipulator Navigation * Parallel (latitude), an imaginary east–west line circling a globe * Parallel of declination, used in astronomy Music and entertainment * ''Parallel'' (manga) * ''Parallel'' (2018 film), a Canadian science fiction thriller film * Parallel (2023 film) an upcoming American science fiction thriller film * Parallel key, the min ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computer Architecture
In computer engineering, computer architecture is a description of the structure of a computer system made from component parts. It can sometimes be a high-level description that ignores details of the implementation. At a more detailed level, the description may include the instruction set architecture design, microarchitecture design, logic design, and implementation. History The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine. When building the computer Z1 in 1936, Konrad Zuse described in two patent applications for his future projects that machine instructions could be stored in the same storage used for data, i.e., the stored-program concept. Two other early and important examples are: * John von Neumann's 1945 paper, First Draft of a Report on the EDVAC, which described an organization of logical elements; and *Alan Turing's more detailed ''Proposed Electronic Calculator'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Voltage Scaling
Dynamic voltage scaling is a power management technique in computer architecture, where the voltage used in a component is increased or decreased, depending upon circumstances. Dynamic voltage scaling to increase voltage is known as overvolting; dynamic voltage scaling to decrease voltage is known as undervolting. Undervolting is done in order to conserve power, particularly in laptops and other mobile devices, where energy comes from a battery and thus is limited, or in rare cases, to increase reliability. Overvolting is done in order to support higher frequencies for performance. The term "overvolting" is also used to refer to increasing static operating voltage of computer components to allow operation at higher speed (overclocking). Background MOSFET-based digital circuits operate using voltages at circuit nodes to represent logical state. The voltage at these nodes switches between a high voltage and a low voltage during normal operation—when the inputs to a logic gat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Underclocking
Underclocking, also known as downclocking, is modifying a computer or electronic circuit's timing settings to run at a lower clock rate than is specified. Underclocking is used to reduce a computer's power consumption, increase battery life, reduce heat emission, and it may also increase the system's stability, lifespan/reliability and compatibility. Underclocking may be implemented by the factory, but many computers and components may be underclocked by the end user. Types CPU underclocking For microprocessors, the purpose is generally to decrease the need for heat dissipation devices or decrease the electrical power consumption. This can provide increased system stability in high-heat environments, or can allow a system to run with a lower airflow (and therefore quieter) cooling fan or without one at all. For example, a Pentium 4 processor normally clocked at 3.4 GHz can be "underclocked" to 2 GHz and can then be safely run with reduced fan speeds. This invariably c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Overclocking
In computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated speeds. Semiconductor devices operated at higher frequencies and voltages increase power consumption and heat. An overclocked device may be unreliable or fail completely if the additional heat load is not removed or power delivery components cannot meet increased power demands. Many device warranties state that overclocking or over-specification voids any warranty, however there are an increasing number of manufacturers that will allow overclocking as long as performed (relatively) safely. Overview The purpose of overclocking is to increase the operating speed of a given component. Normally, on modern systems, the target of overclocking is increasing the performance of a major chip or subsystem, such as the main processor or graphics cont ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dynamic Frequency Scaling
Dynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip. Dynamic frequency scaling helps preserve battery on mobile devices and decrease cooling cost and noise on quiet computing settings, or can be useful as a security measure for overheated systems (e.g. after poor overclocking). Dynamic frequency scaling almost always appear in conjunction with dynamic voltage scaling, since higher frequencies require higher supply voltages for the digital circuit to yield correct results. The combined topic is known as dynamic voltage and frequency scaling (DVFS). Processor throttling is also known as "automatic underclocking". Automatic overclocking (boosting) is also technically a form of dynamic frequency scaling, but it's relatively new and usu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multi-core (computing)
A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single integrated circuit die (known as a chip multiprocessor or CMP) or onto multiple dies in a single chip package. The microprocessors currently used in almost all personal computers are multi-core. A multi-core processor implements multiprocessing in a single physical package. Designers may couple cores in a multi-core device tightly or loosely. For example, cores may or may not share caches, and they may implement message passing or shared-memory inter-core communicat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parallel Computing
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.S.V. Adve ''et al.'' (November 2008)"Parallel Computing Research at Illinois: The UPCRC Agenda" (PDF). Parallel@Illinois, University of Illinois at Urbana-Champaign. "The main techniques for these performance benefits—increased clock frequency and smarter but increasingly complex architectures—are now hitting the so-called power wall. The computer industry has accepted that future performance increases must largely come from increasing the number of processors (or cores) on a die, rather than m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moore's Law
Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in production. The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor and Intel (and former CEO of the latter), who in 1965 posited a doubling every year in the number of components per integrated circuit, and projected this rate of growth would continue for at least another decade. In 1975, looking forward to the next decade, he revised the forecast to doubling every two years, a compound annual growth rate (CAGR) of 41%. While Moore did not use empirical evidence in forecasting that the historical trend would continue, his prediction held since 1975 and has since become known as a "law". Moore's prediction has been used in the semiconductor industry to g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frequency
Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is equal to one event per second. The period is the interval of time between events, so the period is the reciprocal of the frequency. For example, if a heart beats at a frequency of 120 times a minute (2 hertz), the period, —the interval at which the beats repeat—is half a second (60 seconds divided by 120 beats). Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light. Definitions and units For cyclical phenomena such as oscillations, waves, or for examples of simple harmonic motion, the term ''frequency'' is defined as the number of cycles or vibrations per unit of time. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tejas And Jayhawk
Tejas was a code name for Intel's microprocessor, which was to be a successor to the latest Pentium 4 with the Prescott core and was sometimes referred to as Pentium V. Jayhawk was a code name for its Xeon counterpart. The cancellation of the processors in May 2004 underscored Intel's historical transition of its focus on single-core processors to multi-core processors. History In early 2003, Intel showed Tejas and a plan to release it sometime in 2004, but put it off to 2005. Intel, however, canceled development on May 7, 2004. Analysts attribute these delays and cancellation to heat and power consumption problems due to their goal of reaching ever higher clock speeds, even when sacrificing work done per clock (and therefore performance per clock) in the process. This was already the case with Prescott and its mediocre performance increase over Northwood (not to mention heavy competition from Advanced Micro Devices (AMD) with their Athlon 64). Its changes were done to allow Presco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]