HOME
*





Envy-free Chore Division
Chore division is a fair division problem in which the divided resource is undesirable, so that each participant wants to get as little as possible. It is the mirror-image of the fair cake-cutting problem, in which the divided resource is desirable so that each participant wants to get as much as possible. Both problems have heterogeneous resources, meaning that the resources are nonuniform. In cake division, cakes can have edge, corner, and middle pieces along with different amounts of frosting. Whereas in chore division, there are different chore types and different amounts of time needed to finish each chore. Similarly, both problems assume that the resources are divisible. Chores can be infinitely divisible, because the finite set of chores can be partitioned by chore or by time. For example, a load of laundry could be partitioned by the number of articles of clothing and/or by the amount of time spent loading the machine. The problems differ, however, in the desirability of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Division
Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. It is an active research area in mathematics, economics (especially social choice theory), dispute resolution, etc. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediator but certainly not an arbiter as only the players really know how they value the goods. The archetypal fair division algorithm is divide and choose. It demonstrates that two agents with different tastes can divide a cake such that each of them believes that he got the best piece. The research in fair division can be seen as an exten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Envy-freeness
Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy. General definitions Suppose a certain resource is divided among several agents, such that every agent i receives a share X_i. Every agent i has a personal preference relation \succeq_i over different possible shares. The division is called envy-free (EF) if for all i and j: :::X_i \succeq_i X_j Another term for envy-freeness is no-envy (NE). If the preference of the agents are represented by a value functions V_i, then this definition is equivalent to: :::V_i(X_i) \geq V_i(X_j) Put another way: we say that agent i ''envies'' agent j if i prefers the piece of j over his own piece, i.e.: :::X_i \prec_i X_j :::V_i(X_i) 2 the problem is much harder. See envy-free cake-cutting. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rental Harmony
Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem. In the typical setting, there are n partners who rent together an n-room house for cost fixed by the homeowner. Each housemate may have different preferences — one may prefer a large room, another may prefer a room with a view to the main road, etc. The following two problems should be solved simultaneously: * (a) Assign a room to each partner, * (b) Determine the amount each partner should pay, such that the sum of payments equals the fixed cost. There are several properties that we would like the assignment to satisfy. * Non-negativity (NN): all prices must be 0 or more: no partner should be paid to get a room. * Envy-freeness (EF): Given a pricing scheme (an assignment of rent to rooms), we say that a partner ''prefers'' a given room if he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bad (economics)
An economic bad is the opposite of an economic good. A 'bad' is anything with a negative value to the consumer, or a negative price in the marketplace. Refuse is an example of a bad. A bad is a physical object that lowers a consumer's level of happiness, or stated alternately, a bad is an object whose consumption or presence lowers the utility of the consumer. With normal goods, a two-party transaction results in the exchange of money for some object, as when money is exchanged for a car. With a bad, however, both money and the object in question go the same direction, as when a household gives up both money and garbage to a waste collector A waste collector, also known as a garbageman, garbage collector, trashman (in the US), binman or (rarely) dustman (in the UK), is a person employed by a public or private enterprise to collect and dispose of municipal solid waste (refuse) and ... being compensated to take the garbage. In this way, garbage has a negative price; the waste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Envy-free Cake-cutting
An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation. When there are only two partners, the problem is easy and was solved in antiquity by the divide and choose protocol. When there are three or more partners, the problem becomes much more challenging. Two major variants of the problem have been studied: * Connected pieces, e.g. if the cake is a 1-dimensional interval then each partner must receive a single sub-interval. If there are n partners, only n-1 cuts are needed. * General pieces, e.g. if the cake is a 1-dimensional interval then each partner can receive a union of disjoint sub-intervals. Short history Modern research into the fair cake-cutting problem started in the 1940s. The first fairness criterion studied was proportional divi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rental Harmony
Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem. In the typical setting, there are n partners who rent together an n-room house for cost fixed by the homeowner. Each housemate may have different preferences — one may prefer a large room, another may prefer a room with a view to the main road, etc. The following two problems should be solved simultaneously: * (a) Assign a room to each partner, * (b) Determine the amount each partner should pay, such that the sum of payments equals the fixed cost. There are several properties that we would like the assignment to satisfy. * Non-negativity (NN): all prices must be 0 or more: no partner should be paid to get a room. * Envy-freeness (EF): Given a pricing scheme (an assignment of rent to rooms), we say that a partner ''prefers'' a given room if he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Price Of Fairness
In the theory of fair division, the price of fairness (POF) is the ratio of the largest economic welfare attainable by a division to the economic welfare attained by a ''fair'' division. The POF is a quantitative measure of the loss of welfare that society has to take in order to guarantee fairness. In general, the POF is defined by the following formula: :POF=\frac The exact price varies greatly based on the kind of division, the kind of fairness and the kind of social welfare we are interested in. The most well-studied type of social welfare is '' utilitarian social welfare'', defined as the sum of the (normalized) utilities of all agents. Another type is '' egalitarian social welfare'', defined as the minimum (normalized) utility per agent. Numeric example In this example we focus on the ''utilitarian price of proportionality'', or UPOP. Consider a heterogeneous land-estate that has to be divided among 100 partners, all of whom value it as 100 (or the value is normalized t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sperner's Lemma
In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring (described below) of a triangulation of an simplex contains a cell whose vertices all have different colors. The initial result of this kind was proved by Emanuel Sperner, in relation with proofs of invariance of domain. Sperner colorings have been used for effective computation of fixed points and in root-finding algorithms, and are applied in fair division (cake cutting) algorithms. Finding a Sperner coloring or equivalently a Brouwer fixed point is now believed to be an intractable computational problem, even in the plane, in the general case. The problem is PPAD-complete, a complexity class invented by Christos Papadimitriou. According to the Soviet ''Mathematical Encyclopaedia'' (ed. I.M. Vinogradov), a related 1929 theorem (of Knaster, Borsuk and Mazurkiewicz) had als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simmons–Su Protocols
The Simmons–Su protocols are several protocols for envy-free division. They are based on Sperner's lemma. The merits of these protocols is that they put few restrictions on the preferences of the partners, and ask the partners only simple queries such as "which piece do you prefer?". Protocols were developed for solving several related problems: Cake cutting In the envy-free cake-cutting problem, a "cake" (a heterogeneous divisible resource) has to be divided among ''n'' partners with different preferences over parts of the cake. The cake has to be divided to ''n'' pieces such that: (a) each partner receives a single connected piece, and (b) each partner believes that his piece is (weakly) better than all other pieces. A protocol for solving this problem was developed by Forest Simmons in 1980, in a correspondence with Michael Starbird. It was first publicized by Francis Su in 1999. Given a cut-set (i.e. a certain partition of the cake to ''n'' pieces), we say that a partne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robertson–Webb Rotating-knife Procedure
The Robertson–Webb rotating-knife procedure is a procedure for envy-free cake-cutting of a two-dimensional cake among three partners. It makes only two cuts, so each partner receives a single connected piece. Its main advantage over the earlier Stromquist moving-knives procedure and the later Barbanel–Brams moving-knives procedure is that it requires only a single moving-knife. This advantage uses the two-dimensional nature of the cake. Procedure Initially, each partner makes a vertical cut such that the cake to its left is worth for him exactly 1/3. The leftmost cut is selected. Suppose this cut belongs to Alice. So Alice receives the leftmost piece and her value is exactly 1/3. The remainder has to be divided between the remaining partners (Bob and Carl). Note that Alice's part is worth ''at most'' 1/3 and the remainder is worth ''at least'' 2/3 for Bob and Carl. So, if Bob and Carl each receive at least half of the remainder, they do not envy. The challenge is to make sur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brams–Taylor Procedure
The Brams–Taylor procedure (BTP) is a procedure for envy-free cake-cutting. It explicated the first finite procedure to produce an envy-free division of a cake among any positive integer number of players. History In 1988, prior to the discovery of the BTP, Sol Garfunkel contended that the problem solved by the theorem, namely n-person envy-free cake-cutting, was among the most important problems in 20th century mathematics. The BTP was discovered by Steven Brams and Alan D. Taylor. It was first published in the January 1995 issue of American Mathematical Monthly, and later in 1996 in the authors' book. Brams and Taylor hold a joint US patent from 1999 related to the BTP. Description The BTP divides the cake part-by-part. A typical intermediate state of the BTP is as follows: * A part of the cake, say X, is divided in an envy-free way among all partners. * The rest of the cake, say Y, remains undivided, but - * One partner, say Alice, has an Irrevocable Advantage (IA) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stromquist Moving-knives Procedure
The Stromquist moving-knives procedure is a procedure for envy-free cake-cutting among three players. It is named after Walter Stromquist who presented it in 1980. This procedure was the first envy-free moving knife procedure devised for three players. It requires four knives but only two cuts, so each player receives a single connected piece. There is no natural generalization to more than three players which divides the cake without extra cuts. The resulting partition is not necessarily efficient. Procedure A referee moves a sword from left to right over the cake, hypothetically dividing it into small left piece and a large right piece. Each player moves a knife over the right piece, always keeping it parallel to the sword. The players must move their knives in a continuous manner, without making any "jumps".The importance of this continuity is explained here: When any player shouts "cut", the cake is cut by the sword and by whichever of the players' knives happens to be the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]