HOME
*





Dual Pair
In mathematics, a dual system, dual pair, or duality over a field \mathbb is a triple (X, Y, b) consisting of two vector spaces X and Y over \mathbb and a non-degenerate bilinear map b : X \times Y \to \mathbb. Duality theory, the study of dual systems, is part of functional analysis. According to Helmut H. Schaefer, "the study of a locally convex space in terms of its dual is the central part of the modern theory of topological vector spaces, for it provides the deepest and most beautiful results of the subject." Definition, notation, and conventions ;Pairings A or pair over a field \mathbb is a triple (X, Y, b), which may also be denoted by b(X, Y), consisting of two vector spaces X and Y over \mathbb (which this article assumes is either the real numbers or the complex numbers \Complex) and a bilinear map b : X \times Y \to \mathbb, which is called the bilinear map associated with the pairing or simply the pairing's map/bilinear form. For every x \in X, define \begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sesquilinear Form
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix ''sesqui-'' meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector. A motivating special case is a sesquilinear form on a complex vector space, . This is a map that is linear in one argument and "twists" the linearity of the other argument by complex conjugation (referred to as being antilinear in the other argument). This case arises naturally in mathematical physics applications. Another important case allows the scalars to co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strong Dual Topology
In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) X is the continuous dual space X^ of X equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of X, where this topology is denoted by b\left(X^, X\right) or \beta\left(X^, X\right). The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, X^, has the strong dual topology, X^_b or X^_ may be written. Strong dual topology Throughout, all vector spaces will be assumed to be over the field \mathbb of either the real numbers \R or complex numbers \C. Definition from a dual system Let (X, Y, \langle \cdot, \cdot \rangle) be a dual pair of vector spaces over the field \mathbb of real numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injective Function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Comparison Of Topologies
In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies. Definition A topology on a set may be defined as the collection of subsets which are considered to be "open". An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following, it doesn't matter which definition is used. Let ''τ''1 and ''τ''2 be two topologies on a set ''X'' such that ''τ''1 is contained in ''τ''2: :\tau_1 \subseteq \tau_2. That is, every element of ''τ''1 is also an element of ''τ''2. Then the topology ''τ''1 is said to be a coarser (weaker or smaller) topology than ''τ''2, and ''τ''2 is said to be a finer (stronger or larger) topology than ''τ''1. There are some authors, especially ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthonormal
In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis. Intuitive overview The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces. In the Cartesian plane, two vectors are said to be ''perpendicular'' if the angle between them is 90° (i.e. if they form a right angle). This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero. Similarly, the construction of the norm of a vector is motivated by a desire to extend the intuitive notion of the length of a vector to higher-dimensional spaces. In Cartesian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Net (mathematics)
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codomain of this function is usually some topological space. The motivation for generalizing the notion of a sequence is that, in the context of topology, sequences do not fully encode all information about functions between topological spaces. In particular, the following two conditions are, in general, not equivalent for a map f between topological spaces X and Y: #The map f is continuous in the topological sense; #Given any point x in X, and any sequence in X converging to x, the composition of f with this sequence converges to f(x) (continuous in the sequential sense). While it is necessarily true that condition 1 implies condition 2 (The truth of the condition 1 ensures the truth of the conditions 2.), the reverse implication is not nece ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Convex
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable topologies on vect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Beta Dual
In functional analysis and related areas of mathematics, the beta-dual or -dual is a certain linear subspace of the algebraic dual of a sequence space. Definition Given a sequence space the -dual of is defined as :X^:= \left \. If is an FK-space then each in defines a continuous linear form on :f_y(x) := \sum_^ x_i y_i \qquad x \in X. Examples * c_0^\beta = \ell^1 * (\ell^1)^\beta = \ell^\infty * \omega^\beta = \ Properties The beta-dual of an FK-space is a linear subspace of the continuous dual of . If is an FK-AK space In functional analysis and related areas of mathematics an FK-AK space or FK-space with the AK property is an FK-space which contains the space of finite sequences and has a Schauder basis. Examples and non-examples * c_0 the space of converge ... then the beta dual is linear isomorphic to the continuous dual. {{mathanalysis-stub Functional analysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequence Space
In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field ''K'' of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in ''K'', and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space. The most important sequence spaces in analysis are the spaces, consisting of the -power summable sequences, with the ''p''-norm. These are special cases of L''p'' spaces for the counting measure on the set of natural numbers. Other important classes of sequences like ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Conjugate Vector Space
In mathematics, the complex conjugate of a complex vector space V\, is a complex vector space \overline V, which has the same elements and additive group structure as V, but whose scalar multiplication involves conjugation of the scalars. In other words, the scalar multiplication of \overline V satisfies \alpha\,*\, v = where * is the scalar multiplication of \overline and \cdot is the scalar multiplication of V. The letter v stands for a vector in V, \alpha is a complex number, and \overline denotes the complex conjugate of \alpha. More concretely, the complex conjugate vector space is the same underlying vector space (same set of points, same vector addition and real scalar multiplication) with the conjugate linear complex structure J (different multiplication by i). Motivation If V and W are complex vector spaces, a function f : V \to W is antilinear if f(v + w) = f(v) + f(w) \quad \text \quad f(\alpha v) = \overline \, f(v) With the use of the conjugate vector space \overline ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]