In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the complex conjugate of a
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
is a complex vector space
that has the same elements and additive group structure as
but whose
scalar multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
involves
conjugation
Conjugation or conjugate may refer to:
Linguistics
*Grammatical conjugation, the modification of a verb from its basic form
*Emotive conjugation or Russell's conjugation, the use of loaded language
Mathematics
*Complex conjugation, the change o ...
of the scalars. In other words, the scalar multiplication of
satisfies
where
is the scalar multiplication of
and
is the scalar multiplication of
The letter
stands for a vector in
is a complex number, and
denotes the
complex conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
of
More concretely, the complex conjugate vector space is the same underlying vector space (same set of points, same vector addition and real scalar multiplication) with the conjugate
linear complex structure
In mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, - \text_V . Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to re ...
(different multiplication by
).
Motivation
If
and
are complex vector spaces, a function
is
antilinear if
With the use of the conjugate vector space
, an antilinear map
can be regarded as an ordinary
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
of type
The linearity is checked by noting:
Conversely, any linear map defined on
gives rise to an antilinear map on
This is the same underlying principle as in defining the
opposite ring
In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring is the ring ...
so that a right
-
module can be regarded as a left
-module, or that of an
opposite category
In category theory, a branch of mathematics, the opposite category or dual category C^ of a given Category (mathematics), category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal ...
so that a
contravariant functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
can be regarded as an ordinary functor of type
Complex conjugation functor
A linear map
gives rise to a corresponding linear map
that has the same action as
Note that
preserves scalar multiplication because
Thus, complex conjugation
and
define a
functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
from the
category
Category, plural categories, may refer to:
General uses
*Classification, the general act of allocating things to classes/categories Philosophy
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce)
* Category ( ...
of complex vector spaces to itself.
If
and
are finite-dimensional and the map
is described by the complex
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
with respect to the
bases of
and
of
then the map
is described by the complex conjugate of
with respect to the bases
of
and
of
Structure of the conjugate
The vector spaces
and
have the same
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
over the complex numbers and are therefore
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
as complex vector spaces. However, there is no
natural isomorphism
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natura ...
from
to
The double conjugate
is identical to
Complex conjugate of a Hilbert space
Given a
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
(either finite or infinite dimensional), its complex conjugate
is the same vector space as its
continuous dual space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by const ...
There is one-to-one antilinear correspondence between continuous linear functionals and vectors.
In other words, any continuous
linear functional
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field of ...
on
is an inner multiplication to some fixed vector, and vice versa.
Thus, the complex conjugate to a vector
particularly in finite dimension case, may be denoted as
(v-dagger, a
row vector
In linear algebra, a column vector with elements is an m \times 1 matrix consisting of a single column of entries, for example,
\boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end.
Similarly, a row vector is a 1 \times n matrix for some , co ...
that is the
conjugate transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate ...
to a column vector
).
In
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, the conjugate to a ''ket vector''
is denoted as
– a ''bra vector'' (see
bra–ket notation
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically de ...
).
See also
*
*
*
*
conjugate bundle
References
Further reading
* Budinich, P. and Trautman, A. ''The Spinorial Chessboard''. Springer-Verlag, 1988. {{ISBN, 0-387-19078-3. (complex conjugate vector spaces are discussed in section 3.3, pag. 26).
Linear algebra
Vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...