HOME





Drinker Paradox
The drinker paradox (also known as the drinker's theorem, the drinker's principle, or the drinking principle) is a theorem of classical predicate logic that can be stated as "There is someone in the pub such that, if he or she is drinking, then everyone in the pub is drinking." It was popularised by the mathematical logician Raymond Smullyan, who called it the "drinking principle" in his 1978 book ''What Is the Name of this Book?'' The apparently paradoxical nature of the statement comes from the way it is usually stated in natural language. It seems counterintuitive both that there could be a person who is ''causing'' the others to drink, or that there could be a person such that all through the night that one person were always the ''last'' to drink. The first objection comes from confusing formal "if then" statements with causation (see Correlation does not imply causation or Relevance logic for logics that demand relevant relationships between premise and consequent, unlike ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuous Truth
In mathematics and logic, a vacuous truth is a conditional or universal statement (a universal statement that can be converted to a conditional statement) that is true because the antecedent cannot be satisfied. It is sometimes said that a statement is vacuously true because it does not really say anything. For example, the statement "all cell phones in the room are turned off" will be true when no cell phones are present in the room. In this case, the statement "all cell phones in the room are turned ''on''" would also be vacuously true, as would the conjunction of the two: "all cell phones in the room are turned on ''and'' turned off", which would otherwise be incoherent and false. More formally, a relatively well-defined usage refers to a conditional statement (or a universal conditional statement) with a false antecedent. One example of such a statement is "if Tokyo is in Spain, then the Eiffel Tower is in Bolivia". Such statements are considered vacuous truths becau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Temporal Logic
In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time (for example, "I am ''always'' hungry", "I will ''eventually'' be hungry", or "I will be hungry ''until'' I eat something"). It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians. Temporal logic has found an important application in formal verification, where it is used to state requirements of hardware or software systems. For instance, one may wish to say that ''whenever'' a request is made, access to a resource is ''eventually'' granted, but it is ''never'' granted to two requestors simultaneously. Such a statement can conveniently be expressed in a temporal logic. Motivation Consider the statement "I am hungry". Though it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reification (linguistics)
In information retrieval and natural language processing reification is the process by which an abstract idea about a person, place or thing, is turned into an explicit data model or other object created in a programming language, such as a feature set of demographichttp://cs.iit.edu/~culotta/pubs/culotta15predicting.pdf or psychographic attributes or both. By means of reification, something that was previously implicit, unexpressed, and possibly inexpressible is explicitly formulated and made available to conceptual (logical or computational) manipulation. The process by which a natural language statement is transformed so actions and events in it become quantifiable variables is semantic parsing.https://cs.stanford.edu/~pliang/papers/executable-cacm2016.pdf For example "John chased the duck furiously" can be transformed into something like :(Exists e)(chasing(e) & past_tense(e) & actor(e,John) & furiously(e) & patient(e,duck)). Another example would be "Sally said John is mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Paradoxes
This list includes well known paradoxes, grouped thematically. The grouping is approximate, as paradoxes may fit into more than one category. This list collects only scenarios that have been called a paradox by at least one source and have their own article in this encyclopedia. These paradoxes may be due to fallacious reasoning (falsidical), or an unintuitive solution (Veridical paradox, veridical). The term ''paradox'' is often used to describe a counter-intuitive result. However, some of these paradoxes qualify to fit into the mainstream viewpoint of a paradox, which is a self-contradictory result gained even while properly applying accepted ways of reasoning. These paradoxes, often called ''antinomy,'' point out genuine problems in our understanding of the ideas of truth and Definite description, description. Logic * : The supposition that, "if one of two simultaneous assumptions leads to a contradiction, the other assumption is also disproved" leads to paradoxical conseq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proof Assistants
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof editor, or other User interface, interface, with which a human can guide the search for proofs, the details of which are stored in, and some steps provided by, a computer. A recent effort within this field is making these tools use artificial intelligence to automate the formalization of ordinary mathematics. System comparison * ACL2 – a programming language, a first-order logical theory, and a theorem prover (with both interactive and automatic modes) in the Boyer–Moore tradition. * Rocq (software), Rocq (formerly known as ''Coq'')  – Allows the expression of mathematical assertions, mechanically checks proofs of these assertions, helps to find formal proofs, and extracts a certified program from the constructive proof ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automated Reasoning
In computer science, in particular in knowledge representation and reasoning and metalogic, the area of automated reasoning is dedicated to understanding different aspects of reasoning. The study of automated reasoning helps produce computer programs that allow computers to reason completely, or nearly completely, automatically. Although automated reasoning is considered a sub-field of artificial intelligence, it also has connections with theoretical computer science and philosophy. The most developed subareas of automated reasoning are automated theorem proving (and the less automated but more pragmatic subfield of interactive theorem proving) and automated proof checking (viewed as guaranteed correct reasoning under fixed assumptions). Extensive work has also been done in reasoning by analogy using induction and abduction. Other important topics include reasoning under uncertainty and non-monotonic reasoning. An important part of the uncertainty field is that of argumentat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Material Conditional
The material conditional (also known as material implication) is a binary operation commonly used in logic. When the conditional symbol \to is interpreted as material implication, a formula P \to Q is true unless P is true and Q is false. Material implication is used in all the basic systems of classical logic as well as some nonclassical logics. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in many programming languages. However, many logics replace material implication with other operators such as the strict conditional and the variably strict conditional. Due to the paradoxes of material implication and related problems, material implication is not generally considered a viable analysis of conditional sentences in natural language. Notation In logic and related fields, the material conditional is customarily notated with an infix operator \to. The material conditional is also notated using the i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ex Falso Quodlibet
In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion. The proof of this principle was first given by 12th-century French philosopher William of Soissons. Due to the principle of explosion, the existence of a contradiction ( inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's paradox at the foundations of mathematics thus threatened the entire structure of mathematics. Mathematicians such as Gottlob Frege, Ernst Zermelo, Abraham Fraenkel, and Thoralf Skolem put much effort into revising set theory to eliminate these contradictions, resulting in the mode ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Witness (mathematics)
In mathematical logic, a witness is a specific value to be substituted for variable of an existential statement of the form such that is true. Examples For example, a theory ''T'' of arithmetic is said to be inconsistent if there exists a proof in ''T'' of the formula "0 = 1". The formula I(''T''), which says that ''T'' is inconsistent, is thus an existential formula. A witness for the inconsistency of ''T'' is a particular proof of "0 = 1" in ''T''. Boolos, Burgess, and Jeffrey (2002:81) define the notion of a witness with the example, in which ''S'' is an ''n''-place relation on natural numbers, ''R'' is an ''(n+1)''-place recursive relation, and ↔ indicates logical equivalence In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending ... (if and only if): :: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antecedent (logic)
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the ''protasis''. Examples: * If P, then Q. This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q. In the implication "\phi implies \psi", \phi is called the antecedent and \psi is called the consequent.Sets, Functions and Logic - An Introduction to Abstract Mathematics, Keith Devlin, Chapman & Hall/CRC Mathematics, 3rd ed., 2004 Antecedent and consequent are connected via logical connective to form a proposition. * If X is a man, then X is mortal. "X is a man" is the antecedent for this proposition while "X is mortal" is the consequent of the proposition. * If men have walked on the Moon, then I am the king of France. Here, "men have walked on the Moon" is the antecedent and "I am the king of France" is the consequent. Let y=x+1. * If x=1 then y=2,. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]