Antecedent (logic)
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the ''protasis''. Examples: * If P, then Q. This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q. In the implication "\phi implies \psi", \phi is called the antecedent and \psi is called the consequent.Sets, Functions and Logic - An Introduction to Abstract Mathematics, Keith Devlin, Chapman & Hall/CRC Mathematics, 3rd ed., 2004 Antecedent and consequent are connected via logical connective to form a proposition. * If X is a man, then X is mortal. "X is a man" is the antecedent for this proposition while "X is mortal" is the consequent of the proposition. * If men have walked on the Moon, then I am the king of France. Here, "men have walked on the Moon" is the antecedent and "I am the king of France" is the consequent. Let y=x+1. * If x=1 then y=2,. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypothetical
A hypothesis (: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or thought. If a hypothesis is repeatedly independently demonstrated by experiment to be true, it becomes a scientific theory. In colloquial usage, the words "hypothesis" and "theory" are often used interchangeably, but this is incorrect in the context of science. A working hypothesis is a provisionally-accepted hypothesis used for the purpose of pursuing further progress in research. Working hypotheses are frequently discarded, and often proposed with knowledge (and warning) that they are incomplete and thus false, with the intent of moving research in at least somewhat the right direction, especially when scientists are stuck on an issue and brainstorming ideas. A different meaning of the term ''hypothesis'' is used in formal logic, to d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proposition
A proposition is a statement that can be either true or false. It is a central concept in the philosophy of language, semantics, logic, and related fields. Propositions are the object s denoted by declarative sentences; for example, "The sky is blue" expresses the proposition that the sky is blue. Unlike sentences, propositions are not linguistic expressions, so the English sentence "Snow is white" and the German "Schnee ist weiß" denote the same proposition. Propositions also serve as the objects of belief and other propositional attitudes, such as when someone believes that the sky is blue. Formally, propositions are often modeled as functions which map a possible world to a truth value. For instance, the proposition that the sky is blue can be modeled as a function which would return the truth value T if given the actual world as input, but would return F if given some alternate world where the sky is green. However, a number of alternative formalizations have be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Sentence
A conditional sentence is a sentence in a natural language that expresses that one thing is contingent on another, e.g., "If it rains, the picnic will be cancelled." They are so called because the impact of the sentence’s main clause is ''conditional'' on a subordinate clause. A full conditional thus contains two clauses: the subordinate clause, called the ''antecedent'' (or ''protasis'' or ''if-clause''), which expresses the condition, and the main clause, called the ''consequent'' (or ''apodosis'' or ''then-clause'') expressing the result. To form conditional sentences, languages use a variety of grammatical forms and constructions. The forms of verbs used in the antecedent and consequent are often subject to particular rules as regards their tense, aspect, and mood. Many languages have a specialized type of verb form called the conditional mood – broadly equivalent in meaning to the English "would (do something)" – for use in some types of conditional sentences. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Consequent
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if ''P'' implies ''Q'', then ''P'' is called the antecedent and ''Q'' is called the consequent. In some contexts, the consequent is called the ''apodosis''.See Conditional sentence. Examples: * If P, then Q. Q is the consequent of this hypothetical proposition. * If X is a mammal, then X is an animal. Here, "X is an animal" is the consequent. * If computers can think, then they are alive. "They are alive" is the consequent. The consequent in a hypothetical proposition is not necessarily a consequence of the antecedent. * If monkeys are purple, then fish speak Klingon. "Fish speak Klingon" is the consequent here, but intuitively is not a consequence of (nor does it have anything to do with) the claim made in the antecedent that "monkeys are purple". See also * Antecedent (logic) * Conjecture * Necessity and s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Material Conditional
The material conditional (also known as material implication) is a binary operation commonly used in logic. When the conditional symbol \to is interpreted as material implication, a formula P \to Q is true unless P is true and Q is false. Material implication is used in all the basic systems of classical logic as well as some nonclassical logics. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in many programming languages. However, many logics replace material implication with other operators such as the strict conditional and the variably strict conditional. Due to the paradoxes of material implication and related problems, material implication is not generally considered a viable analysis of conditional sentences in natural language. Notation In logic and related fields, the material conditional is customarily notated with an infix operator \to. The material conditional is also notated using the i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Connective
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective \lor can be used to join the two atomic formulas P and Q, rendering the complex formula P \lor Q . Common connectives include negation, disjunction, conjunction, implication, and equivalence. In standard systems of classical logic, these connectives are interpreted as truth functions, though they receive a variety of alternative interpretations in nonclassical logics. Their classical interpretations are similar to the meanings of natural language expressions such as English "not", "or", "and", and "if", but not identical. Discrepancies between natural language connectives and those of classical logic have motivated nonclassical approaches to natural language meaning as well as approaches which pair a classi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statement (logic)
In logic and semantics, the term statement is variously understood to mean either: #a meaningful sentence (linguistics)#By_function_or_speech_act, declarative sentence that is Truth, true or false (logic), false, or #a proposition. Which is the ''Denotation, assertion'' that is made by (i.e., the Meaning (linguistics), meaning of) a true or false declarative sentence. "A statement is defined as that which is ''expressible'' by a ''sentence'', and is either true or false... A statement is a more abstract entity than even a sentence type. It is not identical with the sentence used to express it... [That is,] different sentences can be used to express the same statement." In the latter case, a (declarative) sentence is just one way of expressing an underlying statement. A statement is what a sentence means, it is the notion or idea that a sentence expresses, i.e., what it represents. For example, it could be said that "2 + 2 = 4" and "two plus two equals four" are two different sente ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Consequent
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if ''P'' implies ''Q'', then ''P'' is called the antecedent and ''Q'' is called the consequent. In some contexts, the consequent is called the ''apodosis''.See Conditional sentence. Examples: * If P, then Q. Q is the consequent of this hypothetical proposition. * If X is a mammal, then X is an animal. Here, "X is an animal" is the consequent. * If computers can think, then they are alive. "They are alive" is the consequent. The consequent in a hypothetical proposition is not necessarily a consequence of the antecedent. * If monkeys are purple, then fish speak Klingon. "Fish speak Klingon" is the consequent here, but intuitively is not a consequence of (nor does it have anything to do with) the claim made in the antecedent that "monkeys are purple". See also * Antecedent (logic) * Conjecture * Necessity and s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affirming The Consequent
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the antecedent is true. It takes on the following form: :: If ''P'', then ''Q''. :: ''Q''. :: Therefore, ''P''. which may also be phrased as : P \rightarrow Q (P implies Q) : \therefore Q \rightarrow P (therefore, Q implies P) For example, it may be true that a broken lamp would cause a room to become dark. It is not true, however, that a dark room implies the presence of a broken lamp. There may be no lamp (or any light source). The lamp may also be off. In other words, the consequent (a dark room) can have other antecedents (no lamp, off-lamp), and so can still be true even if the stated antecedent is not. Converse errors are comm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Denying The Antecedent
Denying the antecedent (also known as inverse error or fallacy of the inverse) is a formal fallacy of inferring the inverse from an original statement. Phrased another way, denying the antecedent occurs in the context of an indicative conditional statement and assumes that the negation of the antecedent implies the negation of the consequent. It is a type of mixed hypothetical syllogism that takes on the following form: :If ''P'', then ''Q''. :Not ''P''. :Therefore, not ''Q''. which may also be phrased as :P \rightarrow Q (P implies Q) :\therefore \neg P \rightarrow \neg Q (therefore, not-P implies not-Q) Arguments of this form are invalid. Informally, this means that arguments of this form do not give good reason to establish their conclusions, even if their premises are true. The name ''denying the antecedent'' derives from the premise "not ''P''", which denies the "if" clause (antecedent) of the conditional premise. The only situation where one may deny the an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Necessity And Sufficiency
In logic and mathematics, necessity and sufficiency are terms used to describe a material conditional, conditional or implicational relationship between two Statement (logic), statements. For example, in the Conditional sentence, conditional statement: "If then ", is necessary for , because the Truth value, truth of is guaranteed by the truth of . (Equivalently, it is impossible to have without , or the falsity of ensures the falsity of .) Similarly, is sufficient for , because being true always implies that is true, but not being true does not always imply that is not true. In general, a necessary condition is one (possibly one of several conditions) that must be present in order for another condition to occur, while a sufficient condition is one that produces the said condition. The assertion that a statement is a "necessary ''and'' sufficient" condition of another means that the former statement is true if and only if the latter is true. That is, the two statements mu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |