Affirming the consequent, sometimes called converse error, fallacy of the converse, or confusion of necessity and sufficiency, is a
formal fallacy In philosophy, a formal fallacy, deductive fallacy, logical fallacy or non sequitur (; Latin for " tdoes not follow") is a pattern of reasoning rendered invalid by a flaw in its logical structure that can neatly be expressed in a standard logic syst ...
of taking a true
conditional statement (e.g., "If the lamp were broken, then the room would be dark"), and invalidly inferring its converse ("The room is dark, so the lamp is broken"), even though that statement may not be true. This arises when a consequent ("the room would be dark") has other possible antecedents (for example, "the lamp is in working order, but is switched off" or "there is no lamp in the room").
Converse errors are common in everyday thinking and communication and can result from, among other causes, communication issues, misconceptions about logic, and failure to consider other causes.
The opposite statement, denying the consequent, ''is'' a valid form of argument (
modus tollens
In propositional logic, ''modus tollens'' () (MT), also known as ''modus tollendo tollens'' (Latin for "method of removing by taking away") and denying the consequent, is a deductive argument form and a rule of inference. ''Modus tollens' ...
).
Formal description
Affirming the consequent is the action of taking a true statement
and invalidly concluding its converse
. The name ''affirming the
consequent
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if ''P'' implies ''Q'', then ''P'' is called the antecedent and ''Q'' is called ...
'' derives from using the consequent, ''Q'', of
, to conclude the antecedent ''P''. This fallacy can be summarized formally as
or, alternatively,
.
The root cause of such a logical error is sometimes failure to realize that just because ''P'' is a ''possible'' condition for ''Q'', ''P'' may not be the ''only'' condition for ''Q'', i.e. ''Q'' may follow from another condition as well.
Affirming the consequent can also result from overgeneralizing the experience of many statements ''having'' true converses. If ''P'' and ''Q'' are "equivalent" statements, i.e.
, it ''is'' possible to infer ''P'' under the condition ''Q''. For example, the statements "It is August 13, so it is my birthday"
and "It is my birthday, so it is August 13"
are equivalent and both true consequences of the statement "August 13 is my birthday" (an abbreviated form of
).
Of the possible forms of "mixed
hypothetical syllogisms," two are valid and two are invalid. Affirming the antecedent (
modus ponens) and denying the consequent (
modus tollens
In propositional logic, ''modus tollens'' () (MT), also known as ''modus tollendo tollens'' (Latin for "method of removing by taking away") and denying the consequent, is a deductive argument form and a rule of inference. ''Modus tollens' ...
) are valid. Affirming the consequent and
denying the antecedent
Denying the antecedent, sometimes also called inverse error or fallacy of the inverse, is a formal fallacy of inferring the inverse from the original statement. It is committed by reasoning in the form:
:If ''P'', then ''Q''.
:Therefore, if not ...
are invalid.
[Kelley, David (1998), ''The Art of Reasoning'' (3rd edition). Norton, pp. 290–94.]
Additional examples
Example 1
One way to demonstrate the invalidity of this argument form is with a counterexample with true premises but an obviously false conclusion. For example:
:If someone lives in
San Diego
San Diego ( , ; ) is a city on the Pacific Ocean coast of Southern California located immediately adjacent to the Mexico–United States border. With a 2020 population of 1,386,932, it is the List of United States cities by population, eigh ...
, then they live in
California
California is a U.S. state, state in the Western United States, located along the West Coast of the United States, Pacific Coast. With nearly 39.2million residents across a total area of approximately , it is the List of states and territori ...
.
:Joe lives in California.
:Therefore, Joe lives in San Diego.
There are many ways to live in California without living in San Diego, as long as they live in a Californian place other than San Diego.
However, one can affirm with certainty that "if someone does not live in California" (''non-Q''), then "this person does not live in San Diego" (''non-P''). This is the
contrapositive
In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statem ...
of the first statement, and it must be true if and only if the original statement is true.
Example 2
Here is another useful, obviously fallacious example.
:If an animal is a dog, then it has four legs.
:My cat has four legs.
:Therefore, my cat is a dog.
Here, it is immediately intuitive that any number of other antecedents ("If an animal is a deer...", "If an animal is an elephant...", "If an animal is a moose...", ''etc.'') can give rise to the consequent ("then it has four legs"), and that it is preposterous to suppose that having four legs ''must'' imply that the animal is a dog and nothing else. This is useful as a teaching example since most people can immediately recognize that the conclusion reached must be wrong (intuitively, a cat cannot be a dog), and that the method by which it was reached must therefore be fallacious.
Example 3
Arguments of the same form can sometimes seem superficially convincing, as in the following example:
:If Brian had been thrown off the top of the
Eiffel Tower
The Eiffel Tower ( ; french: links=yes, tour Eiffel ) is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower.
Locally nicknamed "'' ...
, then he would be dead.
:Brian is dead.
:Therefore, Brian was thrown off the top of the Eiffel Tower.
Being thrown off the top of the Eiffel Tower is not the ''only'' cause of death, since there exist numerous different causes of death.
Example 4
In ''
Catch-22
''Catch-22'' is a satirical war novel by American author Joseph Heller. He began writing it in 1953; the novel was first published in 1961. Often cited as one of the most significant novels of the twentieth century, it uses a distinctive non-ch ...
'',
the chaplain is interrogated for supposedly being "Washington Irving"/"Irving Washington", who has been blocking out large portions of soldiers' letters home. The colonel has found such a letter, but with the Chaplain's name signed.
:"You can read, though, can't you?" the colonel persevered sarcastically. "The author signed his name."
:"That's my name there."
:"Then you wrote it.
Q.E.D."
''P'' in this case is 'The chaplain signs his own name', and ''Q'' 'The chaplain's name is written'. The chaplain's name may be written, but he did not necessarily write it, as the colonel falsely concludes.''
See also
*
Abductive reasoning
Abductive reasoning (also called abduction,For example: abductive inference, or retroduction) is a form of logical inference formulated and advanced by American philosopher Charles Sanders Peirce beginning in the last third of the 19th century ...
*
Appeal to consequences
Appeal to consequences, also known as ''argumentum ad consequentiam'' (Latin for "argument to the consequence"), is an argument that concludes a hypothesis (typically a belief) to be either true or false based on whether the premise leads to desi ...
*
Confusion of the inverse Confusion of the inverse, also called the conditional probability fallacy or the inverse fallacy, is a logical fallacy whereupon a conditional probability is equated with its inverse; that is, given two events ''A'' and ''B'', the probability of ''A ...
*
Denying the antecedent
Denying the antecedent, sometimes also called inverse error or fallacy of the inverse, is a formal fallacy of inferring the inverse from the original statement. It is committed by reasoning in the form:
:If ''P'', then ''Q''.
:Therefore, if not ...
*
Fallacy of the single cause
The fallacy of the single cause, also known as complex cause, causal oversimplification, causal reductionism, and reduction fallacy, is an informal fallacy of questionable cause that occurs when it is assumed that there is a single, simple cause of ...
*
Fallacy of the undistributed middle
The fallacy of the undistributed middle () is a formal fallacy that is committed when the middle term in a categorical syllogism is not distributed in either the minor premise or the major premise. It is thus a syllogistic fallacy.
Classical f ...
* ''
Modus ponens''
*
Necessity and sufficiency
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
References
{{Fallacies
Propositional fallacies
Fallacies
Logic articles needing expert attention