Disjunctive Syllogism
In classical logic, disjunctive syllogism (historically known as ''modus tollendo ponens'' (MTP), Latin for "mode that affirms by denying") is a valid argument form which is a syllogism having a disjunctive statement for one of its premises. An example in English: # The breach is a safety violation, or it is not subject to fines. # The breach is not a safety violation. # Therefore, it is not subject to fines. Propositional logic In propositional logic, disjunctive syllogism (also known as disjunction elimination and or elimination, or abbreviated ∨E), is a valid rule of inference. If we are told that at least one of two statements is true; and also told that it is not the former that is true; we can infer that it has to be the latter that is true. If ''P'' is true or ''Q'' is true and ''P'' is false, then ''Q'' is true. The reason this is called "disjunctive syllogism" is that, first, it is a syllogism, a three-step argument, and second, it contains a logical disjunct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rule Of Inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called ''modus ponens'' takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules suc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypothetical Syllogism
In classical logic, a hypothetical syllogism is a valid argument form, a syllogism with a conditional statement for one or both of its premises. An example in English: :If I do not wake up, then I cannot go to work. :If I cannot go to work, then I will not get paid. :Therefore, if I do not wake up, then I will not get paid. The term originated with Theophrastus. Propositional logic In propositional logic, hypothetical syllogism is the name of a valid rule of inference (often abbreviated HS and sometimes also called the chain argument, chain rule, or the principle of transitivity of implication). The rule may be stated: :\frac where the rule is that whenever instances of "P \to Q", and "Q \to R" appear on lines of a proof, "P \to R" can be placed on a subsequent line. Hypothetical syllogism is closely related and similar to disjunctive syllogism, in that it is also a type of syllogism, and also the name of a rule of inference. Applicability The rule of hypothetical syllogi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical System
A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such a system as the foundation for the knowledge in mathematics. A formal system may represent a well-defined system of abstract thought. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Background Each formal system is described by primitive symbols (which collectively form an alphabet) to finitely construct a formal language from a set of axioms through inferential rules of formation. The system thus consists of valid formulas built up through finite combinations of the primitive symbols—combinations that are formed from th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modus Ponendo Tollens
''Modus ponendo tollens'' (MPT; Latin: "mode that denies by affirming") is a Validity (logic), valid rule of inference for propositional calculus, propositional logic. It is closely related to ''modus ponens'' and ''modus tollendo ponens''. Overview MPT is usually described as having the form: #Not both A and B #A #Therefore, not B For example: # Ann and Bill cannot both win the race. # Ann won the race. # Therefore, Bill cannot have won the race. As E. J. Lemmon describes it:"''Modus ponendo tollens'' is the principle that, if the negation of a conjunction holds and also one of its conjuncts, then the negation of its other conjunct holds."E. J. Lemmon, Lemmon, Edward John. 2001. ''Beginning Logic''. Taylor and Francis/CRC Press, p. 61. In Table of logic symbols, logic notation this can be represented as: # \neg (A \land B) # A # \therefore \neg B Based on the Sheffer Stroke (alternative denial), ", ", the inference can also be formalized in this way: # A\,, \,B # A # \th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modus Ponens
In propositional logic, ''modus ponens'' (; MP), also known as ''modus ponendo ponens'' (Latin for "method of putting by placing") or implication elimination or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "''P implies Q.'' ''P'' is true. Therefore ''Q'' must also be true." ''Modus ponens'' is closely related to another valid form of argument, ''modus tollens''. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence. Constructive dilemma is the disjunctive version of ''modus ponens''. Hypothetical syllogism is closely related to ''modus ponens'' and sometimes thought of as "double ''modus ponens''." The history of ''modus ponens'' goes back to antiquity. The first to explicitly describe the argument form ''modus ponens'' was Theophrastus. It, along with ''modus tollens'', is one of the standard patterns of inference that can be applied to d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affirming A Disjunct
The formal fallacy of affirming a disjunct also known as the fallacy of the alternative disjunct or a false exclusionary disjunct occurs when a deductive argument takes the following logical form: :A or B :A :Therefore, not B Or in logical operators: : p \vee q : p : \vdash ¬ q Where \vdash denotes a logical assertion. Explanation The fallacy lies in concluding that one disjunct must be false because the other disjunct is true; in fact they may both be true because "or" is defined inclusively rather than exclusively. It is a fallacy of equivocation between the operations OR and XOR. Affirming the disjunct should not be confused with the valid argument known as the disjunctive syllogism. Examples The following argument indicates the unsoundness of affirming a disjunct: :Max is a mammal or Max is a cat. :Max is a mammal. :Therefore, Max is not a cat. This inference is unsound because all cats, by definition, are mammals. A second example provides a first pro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exclusive Or
Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false). It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , , , , , and . The negation of XOR is the logical biconditional, which yields true if and only if the two inputs are the same. It gains the name "exclusive or" because the meaning of "or" is ambiguous when both operands are true; the exclusive or operator ''excludes'' that case. This is sometimes thought of as "one or the other but not both". This could be written as "A or B, but not, A and B". Since it is associative, it may be considered to be an ''n''-ary operator which is true if and only if an odd number of arguments are true. That is, ''a'' XOR ''b'' XOR ... may be treated as XOR(''a'',''b'',...). Truth table The truth table of A XOR B shows that it outputs true whenever the inputs differ: Equivalences, elimination, and introduc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tautology (logic)
In mathematical logic, a tautology (from el, ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. It cannot be untrue. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be Contingency (philosophy), logically contingent. Such a formula can be made either true or false based on the values assigned to its propositi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical conse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metalogic
Metalogic is the study of the metatheory of logic. Whereas ''logic'' studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems.Harry GenslerIntroduction to Logic Routledge, 2001, p. 336. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived ''about'' the languages and systems that are used to express truths. Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic', University of California Press, 1973 The basic objects of metalogical study are formal languages, formal systems, and their interpretations. The study of interpretation of formal systems is the branch of mathematical logic that is known as model theory, and the study of deductive systems is the branch that is known as proof theory. Overview Formal language A ''formal language'' is an organized set of symbols, the symbols of which precis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequent
In mathematical logic, a sequent is a very general kind of conditional assertion. : A_1,\,\dots,A_m \,\vdash\, B_1,\,\dots,B_n. A sequent may have any number ''m'' of condition formulas ''Ai'' (called " antecedents") and any number ''n'' of asserted formulas ''Bj'' (called "succedents" or "consequents"). A sequent is understood to mean that if all of the antecedent conditions are true, then at least one of the consequent formulas is true. This style of conditional assertion is almost always associated with the conceptual framework of sequent calculus. Introduction The form and semantics of sequents Sequents are best understood in the context of the following three kinds of logical judgments: Unconditional assertion. No antecedent formulas. * Example: ⊢ ''B'' * Meaning: ''B'' is true. Conditional assertion. Any number of antecedent formulas. Simple conditional assertion. Single consequent formula. * Example: ''A1'', ''A2'', ''A3'' ⊢ ''B'' * Meaning: IF ''A1'' AND ''A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |