Disjunctive Syllogism
In classical logic, disjunctive syllogism (historically known as ''modus tollendo ponens'' (MTP), Latin for "mode that affirms by denying") is a valid argument form which is a syllogism having a disjunctive statement for one of its premises. An example in English: # I will choose soup or I will choose salad. # I will not choose soup. # Therefore, I will choose salad. Propositional logic In propositional logic, disjunctive syllogism (also known as disjunction elimination and or elimination, or abbreviated ∨E), is a valid rule of inference. If it is known that at least one of two statements is true, and that it is not the former that is true; we can infer that it has to be the latter that is true. Equivalently, if ''P'' is true or ''Q'' is true and ''P'' is false, then ''Q'' is true. The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rule Of Inference
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the Logical form, logical structure of Validity (logic), valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypothetical Syllogism
In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. Ancient references point to the works of Theophrastus and Eudemus for the first investigation of this kind of syllogisms. Types Hypothetical syllogisms come in two types: mixed and pure. A ''mixed'' hypothetical syllogism has two premises: one conditional statement and one statement that either affirms or denies the antecedent or consequent of that conditional statement. For example, :If P, then Q. :P. :∴ Q. In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent. The second premise "affirms" the antecedent. The conclusion, that the consequent must be true, is deductively valid. A mixed hypothetical syllogism has four possible forms, two of which are valid, while the other two are invalid. A valid mixed hypothetical syllogism either affirms the anteceden ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reductio Ad Absurdum
In logic, (Latin for "reduction to absurdity"), also known as (Latin for "argument to absurdity") or ''apagogical argument'', is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction. This argument form traces back to Ancient Greek philosophy and has been used throughout history in both formal mathematical and philosophical reasoning, as well as in debate. In mathematics, the technique is called ''proof by contradiction''. In formal logic, this technique is captured by an axiom for "Reductio ad Absurdum", normally given the abbreviation RAA, which is expressible in propositional logic. This axiom is the introduction rule for negation (see ''negation introduction''). Examples The "absurd" conclusion of a ''reductio ad absurdum'' argument can take a range of forms, as these examples show: * The Earth cannot be flat; otherwise, since the Earth is assumed to be finite in extent, we would find peo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical System
A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms. In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Concepts A formal system has the following: * Formal language, which is a set of well-formed formulas, which are strings of symbols from an alphabet, formed by a formal grammar (consisting of production rules or formation rules). * Deductive system, deductive apparatus, or proof system, which has rules of inference that take axioms and infers theorems, both of which are part of the formal language. A formal system is said to be recursive (i.e. effective) or recursively enumerable if the set of axioms and the set of inference rules are decidable set ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modus Ponendo Tollens
''Modus ponendo tollens'' (MPT; Latin: "mode that denies by affirming") is a valid rule of inference for propositional logic. It is closely related to ''modus ponens'' and '' modus tollendo ponens''. Overview MPT is usually described as having the form: #Not both A and B #A #Therefore, not B For example: # Ann and Bill cannot both win the race. # Ann won the race. # Therefore, Bill cannot have won the race. As E. J. Lemmon describes it: "''Modus ponendo tollens'' is the principle that, if the negation of a conjunction holds and also one of its conjuncts, then the negation of its other conjunct holds." Lemmon, Edward John. 2001. ''Beginning Logic''. Taylor and Francis/CRC Press, p. 61. In logic notation this can be represented as: # \neg (A \land B) # A # \therefore \neg B Based on the Sheffer Stroke (alternative denial), ", ", the inference can also be formalized in this way: # A\,, \,B # A # \therefore \neg B Proof Strong form ''Modus ponendo tollens'' can be made ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modus Ponens
In propositional logic, (; MP), also known as (), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "''P'' implies ''Q.'' ''P'' is true. Therefore, ''Q'' must also be true." ''Modus ponens'' is a mixed hypothetical syllogism and is closely related to another valid form of argument, '' modus tollens''. Both have apparently similar but invalid forms: affirming the consequent and denying the antecedent. Constructive dilemma is the disjunctive version of ''modus ponens''. The history of ''modus ponens'' goes back to antiquity. The first to explicitly describe the argument form ''modus ponens'' was Theophrastus. It, along with '' modus tollens'', is one of the standard patterns of inference that can be applied to derive chains of conclusions that lead to the desired goal. Explanation The form of a ''modus ponens'' argument is a mixed hypothetical syllogism, with two premises and a con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exclusive Disjunction
Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or Logical_equality#Inequality, logical inequality is a Logical connective, logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ (one is true, one is false). With multiple inputs, XOR is true if and only if the number of true inputs is Parity (mathematics), odd. It gains the name "exclusive or" because the meaning of "or" is ambiguous when both operands are true. XOR ''excludes'' that case. Some informal ways of describing XOR are "one or the other but not both", "either one or the other", and "A or B, but not A and B". It is Table of logic symbols, symbolized by the prefix operator J Translated as and by the infix operators XOR (, , or ), EOR, EXOR, \dot, \overline, \underline, ⩛, \oplus, \nleftrightarrow, and \not\equiv. Definition The truth table of A\nleftrightarrow B shows that it outputs true whenever the inpu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tautology (logic)
In mathematical logic, a tautology (from ) is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be logically c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Consequence
Logical consequence (also entailment or logical implication) is a fundamental concept in logic which describes the relationship between statement (logic), statements that hold true when one statement logically ''follows from'' one or more statements. A Validity (logic), valid logical argument is one in which the Consequent, conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is logical truth, necessary and Formalism (philosophy of mathematics), formal, by wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metalogic
Metalogic is the metatheory of logic. Whereas ''logic'' studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived ''about'' the languages and systems that are used to express truths. The basic objects of metalogical study are formal languages, formal systems, and their interpretations. The study of interpretation of formal systems is the branch of mathematical logic that is known as model theory, and the study of deductive systems is the branch that is known as proof theory. Overview Formal language A ''formal language'' is an organized set of symbols, the symbols of which precisely define it by shape and place. Such a language therefore can be defined without reference to the meanings of its expressions; it can exist before any interpretation is assigned to it—that is, befo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequent
In mathematical logic, a sequent is a very general kind of conditional assertion. : A_1,\,\dots,A_m \,\vdash\, B_1,\,\dots,B_n. A sequent may have any number ''m'' of condition formulas ''Ai'' (called " antecedents") and any number ''n'' of asserted formulas ''Bj'' (called "succedents" or " consequents"). A sequent is understood to mean that if all of the antecedent conditions are true, then at least one of the consequent formulas is true. This style of conditional assertion is almost always associated with the conceptual framework of sequent calculus. Introduction The form and semantics of sequents Sequents are best understood in the context of the following three kinds of logical judgments: Unconditional assertion. No antecedent formulas. * Example: ⊢ ''B'' * Meaning: ''B'' is true. Conditional assertion. Any number of antecedent formulas. Simple conditional assertion. Single consequent formula. * Example: ''A1'', ''A2'', ''A3'' ⊢ ''B'' * Meaning: IF ''A1'' AND ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |