Diamondsuit
   HOME
*





Diamondsuit
In mathematics, and particularly in axiomatic set theory, the diamond principle is a combinatorial principle introduced by Ronald Jensen in that holds in the constructible universe () and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility () implies the existence of a Suslin tree. Definitions The diamond principle says that there exists a , a family of sets for such that for any subset of ω1 the set of with is stationary in . There are several equivalent forms of the diamond principle. One states that there is a countable collection of subsets of for each countable ordinal such that for any subset of there is a stationary subset of such that for all in we have and . Another equivalent form states that there exist sets for such that for any subset of there is at least one infinite with . More generally, for a given cardinal number and a stationary set , the statement (some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ronald Jensen
Ronald Björn Jensen (born April 1, 1936) is an American mathematician who lives in Germany, primarily known for his work in mathematical logic and set theory. Career Jensen completed a BA in economics at American University in 1959, and a Ph.D. in mathematics at the University of Bonn in 1964. His supervisor was Gisbert Hasenjaeger. Jensen taught at Rockefeller University, 1969–71, and the University of California, Berkeley, 1971–73. The balance of his academic career was spent in Europe at the University of Bonn, the University of Oslo, the University of Freiburg, the University of Oxford, and the Humboldt-Universität zu Berlin, from which he retired in 2001. He now resides in Berlin. Jensen was honored by the Association for Symbolic Logic as the first Gödel Lecturer in 1990. In 2015, the European Set Theory Society awarded him and John R. Steel the Hausdorff Medal for their paper "K without the measurable". Results Jensen's better-known results include the: * Axioma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Naimark's Problem
Naimark's problem is a question in functional analysis asked by . It asks whether every C*-algebra that has only one irreducible * -representation up to unitary equivalence is isomorphic to the * -algebra of compact operators on some (not necessarily separable) Hilbert space. The problem has been solved in the affirmative for special cases (specifically for separable and Type-I C*-algebras). used the \diamondsuit -Principle to construct a C*-algebra with \aleph_ generators that serves as a counterexample to Naimark's Problem. More precisely, they showed that the existence of a counterexample generated by \aleph_ elements is independent of the axioms of Zermelo–Fraenkel set theory and the Axiom of Choice ( \mathsf ). Whether Naimark's problem itself is independent of \mathsf remains unknown. See also * List of statements undecidable in \mathsf *Gelfand–Naimark Theorem In mathematics, the Gelfand–Naimark theorem states that an arbitrary C*-algebra ''A'' is is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clubsuit
In mathematics, and particularly in axiomatic set theory, ♣''S'' (clubsuit) is a family of combinatorial principles that are a weaker version of the corresponding ◊''S''; it was introduced in 1975 by Adam Ostaszewski. Definition For a given cardinal number \kappa and a stationary set S \subseteq \kappa, \clubsuit_ is the statement that there is a sequence \left\langle A_\delta: \delta \in S\right\rangle such that * every ''A''''δ'' is a cofinal subset of ''δ'' * for every unbounded subset A \subseteq \kappa, there is a \delta so that A_ \subseteq A \clubsuit_ is usually written as just \clubsuit. ♣ and ◊ It is clear that ◊ ⇒ ♣, and it was shown in 1975 that ♣ + CH ⇒ ◊; however, Saharon Shelah gave a proof in 1980 that there exists a model of ♣ in which CH does not hold, so ♣ and ◊ are not equivalent (since ◊ ⇒ CH). See also *Club set In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to es ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Principles
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *

Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The National Academy Of Sciences
''Proceedings of the National Academy of Sciences of the United States of America'' (often abbreviated ''PNAS'' or ''PNAS USA'') is a peer-reviewed multidisciplinary scientific journal. It is the official journal of the National Academy of Sciences, published since 1915, and publishes original research, scientific reviews, commentaries, and letters. According to ''Journal Citation Reports'', the journal has a 2021 impact factor of 12.779. ''PNAS'' is the second most cited scientific journal, with more than 1.9 million cumulative citations from 2008 to 2018. In the mass media, ''PNAS'' has been described variously as "prestigious", "sedate", "renowned" and "high impact". ''PNAS'' is a delayed open access journal, with an embargo period of six months that can be bypassed for an author fee ( hybrid open access). Since September 2017, open access articles are published under a Creative Commons license. Since January 2019, ''PNAS'' has been online-only, although print issues are a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Statements True In L
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as ''V'' = ''L'', where ''V'' and ''L'' denote the von Neumann universe and the constructible universe, respectively. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties). Generalizations of this axiom are explored in inner model theory. Implications The axiom of constructibility implies the axiom of choice (AC), given Zermelo–Fraenkel set theory without the axiom of choice (ZF). It also settles many natural mathematical questions that are independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC); for example, the axiom of constructibility implies the generalized continuum hypothesis, the negation of Suslin's hypothesis, and the existence of an analytical (in fact, \Delta^1_2) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Statements Independent Of ZFC
The mathematical statements discussed below are independent of ZFC (the canonical axiomatic set theory of contemporary mathematics, consisting of the Zermelo–Fraenkel axioms plus the axiom of choice), assuming that ZFC is consistent. A statement is independent of ZFC (sometimes phrased "undecidable in ZFC") if it can neither be proven nor disproven from the axioms of ZFC. Axiomatic set theory In 1931, Kurt Gödel proved the first ZFC independence result, namely that the consistency of ZFC itself was independent of ZFC ( Gödel's second incompleteness theorem). The following statements are independent of ZFC, among others: * the consistency of ZFC; * the continuum hypothesis or CH (Gödel produced a model of ZFC in which CH is true, showing that CH cannot be disproven in ZFC; Paul Cohen later invented the method of forcing to exhibit a model of ZFC in which CH fails, showing that CH cannot be proven in ZFC. The following four independence results are also due to Gödel/Cohen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]