Dialectica Spaces
Dialectica spaces are a categorical way of constructing models of linear logic. They were introduced by Valeria de Paiva, Martin Hyland's student, in her doctoral thesis, as a way of modeling both linear logic and Gödel's Dialectica interpretation—hence the name. Given a category ''C'' and a specific object ''K'' of ''C'' with certain (logical) properties, one can construct the category of Dialectica spaces over ''C'', whose objects are pairs of objects of ''C'', related by a ''C''-morphism into ''K''. Morphisms of Dialectica spaces are similar to Chu space morphisms, but instead of an equality condition, they have an inequality condition, which is read as a logical implication Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one ...: the first object implies the second. Refe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Logic
Linear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction. Linear logic lends itself to many different presentations, explanations, and intuitions. Proof-theoretically, it derives from an analysis of classical sequent calculus in which uses of (the structural rules) contraction and weakening are carefully controlled. Operationally, this means that logical deduction is no longer merely about an ever-expanding collection of persistent "truths", ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Valeria De Paiva
Valeria Correa Vaz de Paiva is a Brazilian mathematician, logician, and computer scientist. Her work includes research on logical approaches to computation, especially using category theory, knowledge representation and natural language semantics, and functional programming with a focus on foundations and type theories... Education De Paiva earned a bachelor's degree in mathematics in 1982, a master's degree in 1984 (on pure algebra) and completed a doctorate at the University of Cambridge in 1988, under the supervision of Martin Hyland. UCAM-CL-TR-213 Her thesis introduced Dialectica spaces, a categorical way of constructing models of linear logic, based on Kurt Gödel's Dialectica interpretation . Career and research She worked for nine years at PARC in Palo Alto, California, and also worked at Rearden Commerce and Cuil before joining Nuance. She is an honorary research fellow in computer science at the University of Birmingham. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Martin Hyland
(John) Martin Elliott Hyland is professor of mathematical logic at the University of Cambridge and a fellow of King's College, Cambridge. His interests include mathematical logic, category theory, and theoretical computer science. Education Hyland was educated at the University of Oxford where he was awarded a Doctor of Philosophy degree in 1975 for research supervised by Robin Gandy. Research and career Martin Hyland is best known for his work on category theory applied to logic (proof theory, recursion theory), theoretical computer science (lambda-calculus and semantics) and higher-dimensional algebra. In particular he is known for work on the effective topos (within topos theory) and on game semantics. His former doctoral students include Eugenia Cheng and Valeria de Paiva Valeria Correa Vaz de Paiva is a Brazilian mathematician, logician, and computer scientist. Her work includes research on logical approaches to computation, especially using category theory, knowledg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dialectica Interpretation
In proof theory, the Dialectica interpretation is a proof interpretation of intuitionistic arithmetic (Heyting arithmetic) into a finite type extension of primitive recursive arithmetic, the so-called System T. It was developed by Kurt Gödel to provide a consistency proof of arithmetic. The name of the interpretation comes from the journal ''Dialectica'', where Gödel's paper was published in a 1958 special issue dedicated to Paul Bernays on his 70th birthday. Motivation Via the Gödel–Gentzen negative translation, the consistency of classical Peano arithmetic had already been reduced to the consistency of intuitionistic Heyting arithmetic. Gödel's motivation for developing the dialectica interpretation was to obtain a relative consistency proof for Heyting arithmetic (and hence for Peano arithmetic). Dialectica interpretation of intuitionistic logic The interpretation has two components: a formula translation and a proof translation. The formula translation describes how ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category (category Theory)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions, and so on. In category theory, ''morphism'' is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an associative operation similar to function composition. A morphism in category theory is an abstraction of a homomorphism. The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chu Space
Chu spaces generalize the notion of topological space by dropping the requirements that the set of open sets be closed under union and finite intersection, that the open sets be extensional, and that the membership predicate (of points in open sets) be two-valued. The definition of continuous function remains unchanged other than having to be worded carefully to continue to make sense after these generalizations. The name is due to Po-Hsiang Chu, who originally constructed a verification of autonomous categories as a graduate student under the direction of Michael Barr in 1979. Definition Understood statically, a Chu space (''A'', ''r'', ''X'') over a set ''K'' consists of a set ''A'' of points, a set ''X'' of states, and a function ''r'' : ''A'' × ''X'' → ''K''. This makes it an ''A'' × ''X'' matrix with entries drawn from ''K'', or equivalently a ''K''-valued binary relation between ''A'' and ''X'' (ordinary binary relations being 2-valued). Understood dynamically, Chu spa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inequality (mathematics)
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: * The notation ''a'' ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). The re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statements that hold true when one statement logically ''follows from'' one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises?Beall, JC and Restall, Greg, Logical Consequence' The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.). All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth. Logical consequence is necessary and formal, by way of examples that explain with formal proof and models of interpretation. A sentence is said to be a logical conse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |