HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, particularly in
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, a morphism is a structure-preserving
map A map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes. Many maps are static, fixed to paper or some other durable medium, while others are dynamic or interactive. Although ...
from one
mathematical structure In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional ...
to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
, morphisms are functions; in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. ...
,
linear transformations In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
; in
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
,
group homomorphism In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) wh ...
s; in
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
,
continuous functions In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in valu ...
, and so on. In
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, ''morphism'' is a broadly similar idea: the mathematical objects involved need not be sets, and the relationships between them may be something other than maps, although the morphisms between the objects of a given category have to behave similarly to maps in that they have to admit an
associative operation In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
similar to
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
. A morphism in category theory is an abstraction of a
homomorphism In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" ...
. The study of morphisms and of the structures (called "objects") over which they are defined is central to category theory. Much of the terminology of morphisms, as well as the intuition underlying them, comes from
concrete categories In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of t ...
, where the ''objects'' are simply ''sets with some additional structure'', and ''morphisms'' are ''structure-preserving functions''. In category theory, morphisms are sometimes also called arrows.


Definition

A
category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
''C'' consists of two classes, one of and the other of . There are two objects that are associated to every morphism, the and the . A morphism ''f'' with source ''X'' and target ''Y'' is written ''f'' : ''X'' → ''Y'', and is represented diagrammatically by an from ''X'' to ''Y''. For many common categories, objects are sets (often with some additional structure) and morphisms are functions from an object to another object. Therefore, the source and the target of a morphism are often called and respectively. Morphisms are equipped with a partial binary operation, called . The composition of two morphisms ''f'' and ''g'' is defined precisely when the target of ''f'' is the source of ''g'', and is denoted ''g'' ∘ ''f'' (or sometimes simply ''gf''). The source of ''g'' ∘ ''f'' is the source of ''f'', and the target of ''g'' ∘ ''f'' is the target of ''g''. The composition satisfies two
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s: ;: For every object ''X'', there exists a morphism id''X'' : ''X'' → ''X'' called the identity morphism on ''X'', such that for every morphism we have id''B'' ∘ ''f'' = ''f'' = ''f'' ∘ id''A''. ;
Associativity In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
: ''h'' ∘ (''g'' ∘ ''f'') = (''h'' ∘ ''g'') ∘ ''f'' whenever all the compositions are defined, i.e. when the target of ''f'' is the source of ''g'', and the target of ''g'' is the source of ''h''. For a concrete category (a category in which the objects are sets, possibly with additional structure, and the morphisms are structure-preserving functions), the identity morphism is just the
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, un ...
, and composition is just ordinary
composition of functions In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
. The composition of morphisms is often represented by a commutative diagram. For example, : The collection of all morphisms from ''X'' to ''Y'' is denoted Hom''C''(''X'',''Y'') or simply Hom(''X'', ''Y'') and called the hom-set between ''X'' and ''Y''. Some authors write Mor''C''(''X'',''Y''), Mor(''X'', ''Y'') or C(''X'', ''Y''). Note that the term hom-set is something of a misnomer, as the collection of morphisms is not required to be a set; a category where Hom(''X'', ''Y'') is a set for all objects ''X'' and ''Y'' is called
locally small In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows asso ...
. Because hom-sets may not be sets, some people prefer to use the term "hom-class". Note that the domain and codomain are in fact part of the information determining a morphism. For example, in the
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition o ...
, where morphisms are functions, two functions may be identical as sets of ordered pairs (may have the same
range Range may refer to: Geography * Range (geographic), a chain of hills or mountains; a somewhat linear, complex mountainous or hilly area (cordillera, sierra) ** Mountain range, a group of mountains bordered by lowlands * Range, a term used to i ...
), while having different codomains. The two functions are distinct from the viewpoint of category theory. Thus many authors require that the hom-classes Hom(''X'', ''Y'') be disjoint. In practice, this is not a problem because if this disjointness does not hold, it can be assured by appending the domain and codomain to the morphisms (say, as the second and third components of an ordered triple).


Some special morphisms


Monomorphisms and epimorphisms

A morphism ''f'': ''X'' → ''Y'' is called a
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism ...
if ''f'' ∘ ''g''1 = ''f'' ∘ ''g''2 implies ''g''1 = ''g''2 for all morphisms ''g''1, ''g''2: ''Z'' → ''X''. A monomorphism can be called a ''mono'' for short, and we can use ''monic'' as an adjective.Jacobson (2009), p. 15. A morphism ''f'' has a left inverse or is a split monomorphism if there is a morphism ''g'': ''Y'' → ''X'' such that ''g'' ∘ ''f'' id''X''. Thus ''f'' ∘ ''g'': ''Y'' → ''Y'' is
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
; that is, (''f'' ∘ ''g'')2 ''f'' ∘ (''g'' ∘ ''f'') ∘ ''g'' ''f'' ∘ ''g''. The left inverse ''g'' is also called a retraction of ''f''. Morphisms with left inverses are always monomorphisms, but the
converse Converse may refer to: Mathematics and logic * Converse (logic), the result of reversing the two parts of a definite or implicational statement ** Converse implication, the converse of a material implication ** Converse nonimplication, a logical c ...
is not true in general; a monomorphism may fail to have a left inverse. In
concrete categories In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of t ...
, a function that has a left inverse is
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
. Thus in concrete categories, monomorphisms are often, but not always, injective. The condition of being an injection is stronger than that of being a monomorphism, but weaker than that of being a split monomorphism. Dually to monomorphisms, a morphism ''f'': ''X'' → ''Y'' is called an
epimorphism In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f ...
if ''g''1 ∘ ''f'' = ''g''2 ∘ ''f'' implies ''g''1 = ''g''2 for all morphisms ''g''1, ''g''2: ''Y'' → ''Z''. An epimorphism can be called an ''epi'' for short, and we can use ''epic'' as an adjective. A morphism ''f'' has a right inverse or is a split epimorphism if there is a morphism ''g'': ''Y'' → ''X'' such that ''f'' ∘ ''g'' id''Y''. The right inverse ''g'' is also called a section of ''f''. Morphisms having a right inverse are always epimorphisms, but the converse is not true in general, as an epimorphism may fail to have a right inverse. If a monomorphism ''f'' splits with left inverse ''g'', then ''g'' is a split epimorphism with right inverse ''f''. In
concrete categories In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of t ...
, a function that has a right inverse is
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
. Thus in concrete categories, epimorphisms are often, but not always, surjective. The condition of being a surjection is stronger than that of being an epimorphism, but weaker than that of being a split epimorphism. In the
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition o ...
, the statement that every surjection has a section is equivalent to the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
. A morphism that is both an epimorphism and a monomorphism is called a bimorphism.


Isomorphisms

A morphism ''f'': ''X'' → ''Y'' is called an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
if there exists a morphism ''g'': ''Y'' → ''X'' such that ''f'' ∘ ''g'' = id''Y'' and ''g'' ∘ ''f'' = id''X''. If a morphism has both left-inverse and right-inverse, then the two inverses are equal, so ''f'' is an isomorphism, and ''g'' is called simply the inverse of ''f''. Inverse morphisms, if they exist, are unique. The inverse ''g'' is also an isomorphism, with inverse ''f''. Two objects with an isomorphism between them are said to be
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
or equivalent. While every isomorphism is a bimorphism, a bimorphism is not necessarily an isomorphism. For example, in the category of
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
s the inclusion Z → Q is a bimorphism that is not an isomorphism. However, any morphism that is both an epimorphism and a ''split'' monomorphism, or both a monomorphism and a ''split'' epimorphism, must be an isomorphism. A category, such as a Set, in which every bimorphism is an isomorphism is known as a balanced category.


Endomorphisms and automorphisms

A morphism ''f'': ''X'' → ''X'' (that is, a morphism with identical source and target) is an
endomorphism In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a gr ...
of ''X''. A split endomorphism is an idempotent endomorphism ''f'' if ''f'' admits a decomposition ''f'' = ''h'' ∘ ''g'' with ''g'' ∘ ''h'' = id. In particular, the
Karoubi envelope In mathematics the Karoubi envelope (or Cauchy completion or idempotent completion) of a category C is a classification of the idempotents of C, by means of an auxiliary category. Taking the Karoubi envelope of a preadditive category gives a pseudo- ...
of a category splits every idempotent morphism. An automorphism is a morphism that is both an endomorphism and an isomorphism. In every category, the automorphisms of an object always form a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, called the
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
of the object.


Examples

* For
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
s commonly considered in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
, such as
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
,
rings Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
,
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
, etc., the morphisms are usually the
homomorphism In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" ...
s, and the notions of isomorphism, automorphism, endomorphism, epimorphism, and monomorphism are the same as the above defined ones. However, in the case of rings, "epimorphism" is often considered as a synonym of "
surjection In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
", although there are
ring epimorphism In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function (mathematics), function between two ring (algebra), rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function ...
s that are not surjective (e.g., when embedding the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s in the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s). * In the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again contin ...
, the morphisms are the
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s and isomorphisms are called
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
s. There are
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
s (that is, isomorphisms of sets) that are not homeomorphisms. * In the category of
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s, the morphisms are the
smooth function In mathematical analysis, the smoothness of a function (mathematics), function is a property measured by the number of Continuous function, continuous Derivative (mathematics), derivatives it has over some domain, called ''differentiability cl ...
s and isomorphisms are called
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two m ...
s. * In the category of small categories, the morphisms are
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s. * In a
functor category In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object in t ...
, the morphisms are
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
s. For more examples, see
Category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
.


See also

*
Normal morphism In category theory and its applications to mathematics, a normal monomorphism or conormal epimorphism is a particularly well-behaved type of morphism. A normal category is a category in which every monomorphism is normal. A conormal category is on ...
*
Zero morphism In category theory, a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object. Definitions Suppose C is a category, and ''f'' : ''X'' → ''Y'' is a morphism in C. The ...


Notes


References

* . * Now available as free on-line edition (4.2MB PDF).


External links

* {{Authority control