Constructible Universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result. What is can be thought of as being built in "stages" resembling the constr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantifier (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable. The mostly commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as duals; in classical logic, they are interdefinable using negation. They can also be used to define more complex quantifiers, as in the formula \neg \exists x P(x) which expresses that nothing has the property P. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gödel Operation
In mathematical set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ..., a set of Gödel operations is a finite collection of operations on sets that can be used to construct the constructible sets from ordinals. introduced the original set of 8 Gödel operations 𝔉1,...,𝔉8 under the name fundamental operations. Other authors sometimes use a slightly different set of about 8 to 10 operations, usually denoted ''G''1, ''G''2,... Definition used the following eight operations as a set of Gödel operations (which he called fundamental operations): #\mathfrak_1(X,Y) = \ #\mathfrak_2(X,Y) = E\cdot X = \ #\mathfrak_3(X,Y) = X-Y #\mathfrak_4(X,Y) = X\upharpoonright Y= X\cdot (V\times Y) = \ #\mathfrak_5(X,Y) = X\cdot \mathfrak(Y) = \ #\mathfrak_6(X,Y) = X\cdot Y^= \ #\mathfr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bounded Quantifiers
In the study of formal theories in mathematical logic, bounded quantifiers (a.k.a. restricted quantifiers) are often included in a formal language in addition to the standard quantifiers "∀" and "∃". Bounded quantifiers differ from "∀" and "∃" in that bounded quantifiers restrict the range of the quantified variable. The study of bounded quantifiers is motivated by the fact that determining whether a sentence with only bounded quantifiers is true is often not as difficult as determining whether an arbitrary sentence is true. Examples Examples of bounded quantifiers in the context of real analysis include: * \forall x > 0 - for all ''x'' where ''x'' is larger than 0 * \exists y 0 \quad \exists y < 0 \quad (x = y^2) - every positive number is the square of a negative number Bounded quantifiers in arithmetic Suppose that ''L'' is the language of Peano a ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Levy Hierarchy
Levy, Lévy or Levies may refer to: People * Levy (surname), people with the surname Levy or Lévy * Levy Adcock (born 1988), American football player * Levy Barent Cohen (1747–1808), Dutch-born British financier and community worker * Levy Fidelix (1951–2021), Brazilian conservative politician, businessman and journalist * Levy Gerzberg (born 1945), Israeli-American entrepreneur, inventor, and business person * Levy Li (born 1987), Miss Malaysia Universe 2008–2009 * Levy Mashiane (born 1996), South African footballer * Levy Matebo Omari (born 1989), Kenyan long-distance runner * Levy Mayer (1858–1922), American lawyer * Levy Middlebrooks (born 1966), American basketball player * Levy Mokgothu, South African footballer * Levy Mwanawasa (1948–2008), President of Zambia from 2002 * Levy Nzoungou (born 1998), Congolese-French rugby player, playing in England * Levy Rozman (born 1995), American chess IM, coach, and content creator * Levy Sekgapane (born 1990), Sou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equinumerous
In mathematics, two sets or classes ''A'' and ''B'' are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', there is exactly one element ''x'' of ''A'' with ''f''(''x'') = ''y''. Equinumerous sets are said to have the same cardinality (number of elements). The study of cardinality is often called equinumerosity (''equalness-of-number''). The terms equipollence (''equalness-of-strength'') and equipotence (''equalness-of-power'') are sometimes used instead. Equinumerosity has the characteristic properties of an equivalence relation. The statement that two sets ''A'' and ''B'' are equinumerous is usually denoted :A \approx B \, or A \sim B, or , A, =, B, . The definition of equinumerosity using bijections can be applied to both finite and infinite sets, and allows one to state whether two sets have the same size even if they are infinite. Georg Cantor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bijection
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a one-to-one (injective) and onto (surjective) mapping of a set ''X'' to a set ''Y''. The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an injective function; see figures). A bijection from the set ''X'' to the set ''Y'' has an inverse function from ''Y'' to ''X''. If ''X'' and ''Y'' are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hereditarily Countable Set
In set theory, a set is called hereditarily countable if it is a countable set of hereditarily countable sets. This inductive definition is well-founded and can be expressed in the language of first-order set theory. A set is hereditarily countable if and only if it is countable, and every element of its transitive closure is countable. If the axiom of countable choice holds, then a set is hereditarily countable if and only if its transitive closure is countable. The class of all hereditarily countable sets can be proven to be a set from the axioms of Zermelo–Fraenkel set theory (ZF) without any form of the axiom of choice, and this set is designated H_. The hereditarily countable sets form a model of Kripke–Platek set theory with the axiom of infinity (KPI), if the axiom of countable choice is assumed in the metatheory. If x \in H_, then L_(x) \subset H_. More generally, a set is hereditarily of cardinality less than κ if it is of cardinality less than κ, and all its ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hereditarily Finite Set
In mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set. Formal definition A recursive definition of well-founded hereditarily finite sets is as follows: : ''Base case'': The empty set is a hereditarily finite set. : ''Recursion rule'': If ''a''1,...,''a''''k'' are hereditarily finite, then so is . The set \ is an example for such a hereditarily finite set and so is the empty set \emptyset=\. On the other hand, the sets \ or \ are examples of finite sets that are not ''hereditarily'' finite. For example, the first cannot be hereditarily finite since it contains at least one infinite set as an element, when = \. Discussion A symbol for the class of hereditarily finite sets is H_, standing for the cardinality of each of its member being smaller than \aleph_0. Whether H_ is a set ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Constructibility
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible universe, constructible. The axiom is usually written as ''V'' = ''L'', where ''V'' and ''L'' denote the von Neumann universe and the constructible universe, respectively. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties). Generalizations of this axiom are explored in inner model theory. Implications The axiom of constructibility implies the axiom of choice (AC), given Zermelo–Fraenkel set theory without the axiom of choice (ZF). It also settles many natural mathematical questions that are independent of Zermelo–Fraenkel set theory with the axiom of choice (ZFC); for example, the axiom of constructibility implies the Continuum hypothesis#The generalized continuum hypothesis, generalized continuum hypothesis, the negation of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transitive Set
In set theory, a branch of mathematics, a set A is called transitive if either of the following equivalent conditions hold: * whenever x \in A, and y \in x, then y \in A. * whenever x \in A, and x is not an urelement, then x is a subset of A. Similarly, a class M is transitive if every element of M is a subset of M. Examples Using the definition of ordinal numbers suggested by John von Neumann, ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals). The class of all ordinals is a transitive class. Any of the stages V_\alpha and L_\alpha leading to the construction of the von Neumann universe V and Gödel's constructible universe L are transitive sets. The universes V and L themselves are transitive classes. This is a complete list of all finite transitive sets with up to 20 brackets: * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, * \, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |