Equinumerous
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, two
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
s or
class Class or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used differently ...
es ''A'' and ''B'' are equinumerous if there exists a
one-to-one correspondence In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
(or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', there is exactly one element ''x'' of ''A'' with ''f''(''x'') = ''y''. Equinumerous sets are said to have the same
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
(number of elements). The study of cardinality is often called equinumerosity (''equalness-of-number''). The terms equipollence (''equalness-of-strength'') and equipotence (''equalness-of-power'') are sometimes used instead. Equinumerosity has the characteristic properties of an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
. The statement that two sets ''A'' and ''B'' are equinumerous is usually denoted :A \approx B \, or A \sim B, or , A, =, B, . The definition of equinumerosity using bijections can be applied to both finite and
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only s ...
s, and allows one to state whether two sets have the same size even if they are infinite.
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance o ...
, the inventor of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
, showed in 1874 that there is more than one kind of infinity, specifically that the collection of all
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s and the collection of all
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s, while both infinite, are not equinumerous (see
Cantor's first uncountability proof Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is ...
). In his controversial 1878 paper, Cantor explicitly defined the notion of "power" of sets and used it to prove that the set of all natural numbers and the set of all
rational numbers In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
are equinumerous (an example where a
proper subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of an infinite set is equinumerous to the original set), and that the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\t ...
of even a
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural number ...
number of copies of the real numbers is equinumerous to a single copy of the real numbers.
Cantor's theorem In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set A, the set of all subsets of A, the power set of A, has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be ...
from 1891 implies that no set is equinumerous to its own
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
(the set of all its subsets). This allows the definition of greater and greater infinite sets starting from a single infinite set. If the axiom of choice holds, then the
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. ...
of a set may be regarded as the least
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
of that cardinality (see initial ordinal). Otherwise, it may be regarded (by
Scott's trick In set theory, Scott's trick is a method for giving a definition of equivalence classes for equivalence relations on a proper class (Jech 2003:65) by referring to levels of the cumulative hierarchy. The method relies on the axiom of regularity but ...
) as the set of sets of minimal rank having that cardinality. The statement that any two sets are either equinumerous or one has a smaller cardinality than the other is equivalent to the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
.


Cardinality

Equinumerous sets have a one-to-one correspondence between them, and are said to have the same
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
. The cardinality of a set ''X'' is a measure of the "number of elements of the set". Equinumerosity has the characteristic properties of an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
( reflexivity,
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
, and transitivity): ;Reflexivity: Given a set ''A'', the
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, un ...
on ''A'' is a bijection from ''A'' to itself, showing that every set ''A'' is equinumerous to itself: . ;Symmetry: For every bijection between two sets ''A'' and ''B'' there exists an
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X ...
which is a bijection between ''B'' and ''A'', implying that if a set ''A'' is equinumerous to a set ''B'' then ''B'' is also equinumerous to ''A'': implies . ;Transitivity: Given three sets ''A'', ''B'' and ''C'' with two bijections and , the
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
of these bijections is a bijection from ''A'' to ''C'', so if ''A'' and ''B'' are equinumerous and ''B'' and ''C'' are equinumerous then ''A'' and ''C'' are equinumerous: and together imply . An attempt to define the cardinality of a set as the equivalence class of all sets equinumerous to it is problematic in
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
, the standard form of
axiomatic set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
, because the equivalence class of any
non-empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
would be too large to be a set: it would be a
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
. Within the framework of Zermelo–Fraenkel set theory, relations are by definition restricted to sets (a binary relation on a set ''A'' is a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\t ...
), and there is no set of all sets in Zermelo–Fraenkel set theory. In Zermelo–Fraenkel set theory, instead of defining the cardinality of a set as the equivalence class of all sets equinumerous to it one tries to assign a representative set to each equivalence class (
cardinal assignment In set theory, the concept of cardinality is significantly developable without recourse to actually defining cardinal numbers as objects in the theory itself (this is in fact a viewpoint taken by Frege; Frege cardinals are basically equivalence cla ...
). In some other systems of axiomatic set theory, for example in
Von Neumann–Bernays–Gödel set theory In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a colle ...
and
Morse–Kelley set theory In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely ...
, relations are extended to classes. A set ''A'' is said to have cardinality smaller than or equal to the cardinality of a set ''B'', if there exists a
one-to-one function In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositi ...
(an injection) from ''A'' into ''B''. This is denoted , ''A'', ≤ , ''B'', . If ''A'' and ''B'' are not equinumerous, then the cardinality of ''A'' is said to be strictly smaller than the cardinality of ''B''. This is denoted , ''A'', < , ''B'', . If the axiom of choice holds, then the law of trichotomy holds for
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. ...
s, so that any two sets are either equinumerous, or one has a strictly smaller cardinality than the other. The law of trichotomy for cardinal numbers also implies the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
. The Schröder–Bernstein theorem states that any two sets ''A'' and ''B'' for which there exist two one-to-one functions and are equinumerous: if , ''A'', ≤ , ''B'', and , ''B'', ≤ , ''A'', , then , ''A'', = , ''B'', . This theorem does not rely on the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
.


Cantor's theorem

Cantor's theorem In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set A, the set of all subsets of A, the power set of A, has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be ...
implies that no set is equinumerous to its
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
(the set of all its
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
s). This holds even for
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only s ...
s. Specifically, the power set of a countably infinite set is an
uncountable set In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal nu ...
. Assuming the existence of an infinite set N consisting of all
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s and assuming the existence of the power set of any given set allows the definition of a sequence N, ''P''(N), ''P''(''P''(N)), of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this sequence strictly exceeds the cardinality of the set preceding it, leading to greater and greater infinite sets. Cantor's work was harshly criticized by some of his contemporaries, for example by
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...
, who strongly adhered to a finitist
philosophy of mathematics The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people' ...
and rejected the idea that numbers can form an actual, completed totality (an
actual infinity In the philosophy of mathematics, the abstraction of actual infinity involves the acceptance (if the axiom of infinity is included) of infinite entities as given, actual and completed objects. These might include the set of natural numbers, exten ...
). However, Cantor's ideas were defended by others, for example by
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
, and ultimately were largely accepted, strongly supported by
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
. See
Controversy over Cantor's theory In mathematical logic, the theory of infinite sets was first developed by Georg Cantor. Although this work has become a thoroughly standard fixture of classical set theory, it has been criticized in several areas by mathematicians and philosophers ...
for more. Within the framework of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
, the axiom of power set guarantees the existence of the power set of any given set. Furthermore, the
axiom of infinity In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing th ...
guarantees the existence of at least one infinite set, namely a set containing the natural numbers. There are alternative set theories, e.g. "
general set theory General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms. ...
" (GST),
Kripke–Platek set theory The Kripke–Platek set theory (KP), pronounced , is an axiomatic set theory developed by Saul Kripke and Richard Platek. The theory can be thought of as roughly the predicative part of ZFC and is considerably weaker than it. Axioms In its fo ...
, and pocket set theory (PST), that deliberately omit the axiom of power set and the axiom of infinity and do not allow the definition of the infinite hierarchy of infinites proposed by Cantor. The cardinalities corresponding to the sets N, ''P''(N), ''P''(''P''(N)), are the
beth number In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written \beth_0,\ \beth_1,\ \beth_2,\ \beth_3,\ \dots, where \beth is the second H ...
s \beth_0, \beth_1, \beth_2, with the first beth number \beth_0 being equal to \aleph_0 (
aleph naught In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are na ...
), the cardinality of any countably infinite set, and the second beth number \beth_1 being equal to \mathfrak c, the
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \math ...
.


Dedekind-infinite sets

In some occasions, it is possible for a set ''S'' and its
proper subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
to be equinumerous. For example, the set of even
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s is equinumerous to the set of all natural numbers. A set that is equinumerous to a proper subsets of itself is called
Dedekind-infinite In mathematics, a set ''A'' is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset ''B'' of ''A'' is equinumerous to ''A''. Explicitly, this means that there exists a bijective function from ''A'' onto ...
. The
axiom of countable choice The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function ''A'' with domain N (where ...
(ACω), a weak variant of the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
(AC), is needed to show that a set that is not Dedekind-infinite is actually
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
. The
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
without the axiom of choice (ZF) are not strong enough to prove that every
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only s ...
is Dedekind-infinite, but the axioms of Zermelo–Fraenkel set theory with the axiom of countable choice () are strong enough. Other definitions of finiteness and infiniteness of sets than that given by Dedekind do not require the axiom of choice for this, see .


Compatibility with set operations

Equinumerosity is compatible with the basic set operations in a way that allows the definition of
cardinal arithmetic In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The ...
. Specifically, equinumerosity is compatible with
disjoint union In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A ( ...
s: Given four sets ''A'', ''B'', ''C'' and ''D'' with ''A'' and ''C'' on the one hand and ''B'' and ''D'' on the other hand
pairwise disjoint In mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A c ...
and with and then This is used to justify the definition of cardinal addition. Furthermore, equinumerosity is compatible with
cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\t ...
s: * If and then * ''A'' × ''B'' ~ ''B'' × ''A'' * (''A'' × ''B'') × ''C'' ~ ''A'' × (''B'' × ''C'') These properties are used to justify cardinal multiplication. Given two sets ''X'' and ''Y'', the set of all functions from ''Y'' to ''X'' is denoted by ''X''''Y''. Then the following statements hold: * If ''A'' ~ ''B'' and ''C'' ~ ''D'' then * ''A''''B'' ∪ ''C'' ~ ''A''''B'' × ''A''''C'' for disjoint ''B'' and ''C''. * (''A'' × ''B'')''C'' ~ ''A''''C'' × ''B''''C'' * (''A''''B'')''C'' ~ ''A''''B''×''C'' These properties are used to justify cardinal exponentiation. Furthermore, the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
of a given set ''A'' (the set of all
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
s of ''A'') is equinumerous to the set 2''A'', the set of all functions from the set ''A'' to a set containing exactly two elements.


Categorial definition

In
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...
, the
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition o ...
, denoted Set, is the
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
consisting of the collection of all sets as
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
s and the collection of all functions between sets as
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms ...
s, with the
composition of functions In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
as the composition of the morphisms. In Set, an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
between two sets is precisely a bijection, and two sets are equinumerous precisely if they are isomorphic as objects in Set.


See also

* Combinatorial class * Hume's principle


References

{{reflist Basic concepts in infinite set theory Cardinal numbers de:Mächtigkeit (Mathematik)#Gleichmächtigkeit, Mächtigkeit