Cohomological Invariant
   HOME
*





Cohomological Invariant
In mathematics, a cohomological invariant of an algebraic group ''G'' over a field is an invariant of forms of ''G'' taking values in a Galois cohomology group. Definition Suppose that ''G'' is an algebraic group defined over a field ''K'', and choose a separably closed field containing ''K''. For a finite extension ''L'' of ''K'' in let Γ''L'' be the absolute Galois group of ''L''. The first cohomology H1(''L'', ''G'') = H1(Γ''L'', ''G'') is a set classifying the ``G''-torsors over ''L'', and is a functor of ''L''. A cohomological invariant of ''G'' of dimension ''d'' taking values in a Γ''K''-module ''M'' is a natural transformation of functors (of ''L'') from H1(L, ''G'') to H''d''(L, ''M''). In other words a cohomological invariant associates an element of an abelian cohomology group to elements of a non-abelian cohomology set. More generally, if ''A'' is any functor from finitely generated extensions of a field to sets, then a cohomological invariant of ''A'' of dime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Cohomology
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated to a field extension ''L''/''K'' acts in a natural way on some abelian groups, for example those constructed directly from ''L'', but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor. History The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of ideal class groups in algebraic number theory was one way to formulate class field theory, at the time it was in the process of ridding itself of connections to L-functions. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a non-abelian theory. It was formulated abstractly as a theory of class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Galois Group
In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' that fix ''K''. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When ''K'' is a perfect field, ''K''sep is the same as an algebraic closure ''K''alg of ''K''. This holds e.g. for ''K'' of characteristic zero, or ''K'' a finite field.) Examples * The absolute Galois group of an algebraically closed field is trivial. * The absolute Galois group of the real numbers is a cyclic group of two elements (complex conjugation and the identity map), since C is the separable closure of R and ''C:Rnbsp;= 2. * The absolute Galois group of a finite field ''K'' is isomorphic to the group :: \hat = \varprojlim \mathbf/n\mathbf. (For the notation, see Inverse limit.) :The Frobenius automorphism Fr is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Module
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for ''G''-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Examples *Given a field ''K'', the multiplicative group (''Ks'')× of a separable closure of ''K'' is a Galois module for the absolute Galois group. Its second cohomology group is isomorphic to the Brauer group of ''K'' (by Hilbert's theorem 90, its first cohomology group is zero). *If ''X'' is a smooth proper scheme over a field ''K'' then the ℓ-adic cohomology groups of its geometric fibre are Galois modules for the absolute Galois group of ''K''. Ramification theory Let ''K'' be a valued field (with valuation denoted ''v'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hasse−Witt Invariant
In mathematics, the Hasse invariant (or Hasse–Witt invariant) of a quadratic form ''Q'' over a field ''K'' takes values in the Brauer group Br(''K''). The name "Hasse–Witt" comes from Helmut Hasse and Ernst Witt. The quadratic form ''Q'' may be taken as a diagonal form :Σ ''a''''i''''x''''i''2. Its invariant is then defined as the product of the classes in the Brauer group of all the quaternion algebras :(''a''''i'', ''a''''j'') for ''i'' < ''j''. This is independent of the diagonal form chosen to compute it.Lam (2005) p.118 It may also be viewed as the second Stiefel–Whitney class of ''Q''.


Symbols

The invariant may be computed for a specific φ taking values in the group C
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stiefel–Whitney Class
In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of sections of the vector bundle. Stiefel–Whitney classes are indexed from 0 to ''n'', where ''n'' is the rank of the vector bundle. If the Stiefel–Whitney class of index ''i'' is nonzero, then there cannot exist (n-i+1) everywhere linearly independent sections of the vector bundle. A nonzero ''n''th Stiefel–Whitney class indicates that every section of the bundle must vanish at some point. A nonzero first Stiefel–Whitney class indicates that the vector bundle is not orientable. For example, the first Stiefel–Whitney class of the Möbius strip, as a line bundle over the circle, is not zero, whereas the first Stiefel–Whitney class of the trivial line bundle over the circle, S^1 \times\R, is zero. The Stiefel–Whitney class was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arason Invariant
In mathematics, the Arason invariant is a cohomological invariant associated to a quadratic form of even rank and trivial Discriminant#Discriminant of a quadratic form, discriminant and Clifford invariant over a Field (mathematics), field ''k'' of Characteristic (algebra), characteristic not 2, taking values in H3(''k'',Z/2Z). It was introduced by . The Rost invariant is a generalization of the Arason invariant to other algebraic groups. Definition Suppose that ''W''(''k'') is the Witt ring (forms), Witt ring of quadratic forms over a field ''k'' and ''I'' is the ideal of forms of even dimension. The Arason invariant is a group homomorphism from ''I''3 to the Galois cohomology group H3(''k'',Z/2Z). It is determined by the property that on the 8-dimensional diagonal form with entries 1, –''a'', –''b'', ''ab'', -''c'', ''ac'', ''bc'', -''abc'' (the 3-fold Pfister form«''a'',''b'',''c''») it is given by the cup product of the classes of ''a'', ''b'', ''c'' in H1(''k'',Z/2Z) = '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]