In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, Galois cohomology is the study of the
group cohomology of
Galois module
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring ...
s, that is, the application of
homological algebra to
modules
Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
for
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
s. A Galois group ''G'' associated to a
field extension ''L''/''K'' acts in a natural way on some
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s, for example those constructed directly from ''L'', but also through other
Galois representation
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring ...
s that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an
exact functor
In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Much ...
.
History
The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of
ideal class group
In number theory, the ideal class group (or class group) of an algebraic number field is the quotient group where is the group of fractional ideals of the ring of integers of , and is its subgroup of principal ideals. The class group is a mea ...
s in
algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
was one way to formulate
class field theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.
Hilbert is credit ...
, at the time it was in the process of ridding itself of connections to
L-function
In mathematics, an ''L''-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An ''L''-series is a Dirichlet series, usually convergent on a half-plane, that may give ri ...
s. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a
non-abelian theory. It was formulated abstractly as a theory of
class formation In mathematics, a class formation is a topological group acting on a module satisfying certain conditions. Class formations were introduced by Emil Artin and John Tate to organize the various Galois groups and modules that appear in class field t ...
s. Two developments of the 1960s turned the position around. Firstly, Galois cohomology appeared as the foundational layer of
étale cohomology
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectur ...
theory (roughly speaking, the theory as it applies to zero-dimensional schemes). Secondly,
non-abelian class field theory was launched as part of the
Langlands philosophy.
The earliest results identifiable as Galois cohomology had been known long before, in algebraic number theory and the
arithmetic of elliptic curves. The
normal basis theorem In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any ...
implies that the first cohomology group of the
additive group
An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation.
This terminology is widely used with structures ...
of ''L'' will vanish; this is a result on general field extensions, but was known in some form to
Richard Dedekind. The corresponding result for the
multiplicative group
In mathematics and group theory, the term multiplicative group refers to one of the following concepts:
*the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
is known as
Hilbert's Theorem 90
In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if ''L''/''K'' is an extension of ...
, and was known before 1900.
Kummer theory In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of ''n''th roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer ar ...
was another such early part of the theory, giving a description of the connecting homomorphism coming from the ''m''-th
power map
Power most often refers to:
* Power (physics), meaning "rate of doing work"
** Engine power, the power put out by an engine
** Electric power
* Power (social and political), the ability to influence people or events
** Abusive power
Power may ...
.
In fact, for a while the multiplicative case of a 1-
cocycle for groups that are not necessarily cyclic was formulated as the solubility of Noether's equations, named for
Emmy Noether
Amalie Emmy NoetherEmmy is the '' Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...
; they appear under this name in
Emil Artin's treatment of Galois theory, and may have been folklore in the 1920s. The case of 2-cocycles for the multiplicative group is that of the
Brauer group Brauer or Bräuer is a surname of German origin, meaning "brewer". Notable people with the name include:-
* Alfred Brauer (1894–1985), German-American mathematician, brother of Richard
* Andreas Brauer (born 1973), German film producer
* Arik ...
, and the implications seem to have been well known to algebraists of the 1930s.
In another direction, that of
torsor
In mathematics, a principal homogeneous space, or torsor, for a group ''G'' is a homogeneous space ''X'' for ''G'' in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group ''G'' is a non-e ...
s, these were already implicit in the
infinite descent In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold fo ...
arguments of
Fermat
Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he i ...
for
elliptic curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
s. Numerous direct calculations were done, and the proof of the
Mordell–Weil theorem had to proceed by some surrogate of a finiteness proof for a particular ''H''
1 group. The 'twisted' nature of objects over fields that are not
algebraically closed
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in .
Examples
As an example, the field of real numbers is not algebraically closed, because ...
, which are not
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
but become so over the
algebraic closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics.
Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1 ...
, was also known in many cases linked to other
algebraic group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory.
Man ...
s (such as
quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example,
:4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong to a ...
s,
simple algebra In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.
The center of a simple ...
s,
Severi–Brauer varieties), in the 1930s, before the general theory arrived.
The needs of number theory were in particular expressed by the requirement to have control of a
local-global principle In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each ...
for Galois cohomology. This was formulated by means of results in class field theory, such as
Hasse's norm theorem. In the case of elliptic curves, it led to the key definition of the
Tate–Shafarevich group In arithmetic geometry, the Tate–Shafarevich group of an abelian variety (or more generally a group scheme) defined over a number field consists of the elements of the Weil–Châtelet group that become trivial in all of the completions of ...
in the
Selmer group
In arithmetic geometry, the Selmer group, named in honor of the work of by , is a group constructed from an isogeny of abelian varieties.
The Selmer group of an isogeny
The Selmer group of an abelian variety ''A'' with respect to an isogeny ''f ...
, which is the obstruction to the success of a local-global principle. Despite its great importance, for example in the
Birch and Swinnerton-Dyer conjecture
In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory an ...
, it proved very difficult to get any control of it, until results of
Karl Rubin
Karl Cooper Rubin (born January 27, 1956) is an American mathematician at University of California, Irvine as Thorp Professor of Mathematics. Between 1997 and 2006, he was a professor at Stanford, and before that worked at Ohio State University b ...
gave a way to show in some cases it was finite (a result generally believed, since its conjectural order was predicted by an L-function formula).
The other major development of the theory, also involving
John Tate John Tate may refer to:
* John Tate (mathematician) (1925–2019), American mathematician
* John Torrence Tate Sr. (1889–1950), American physicist
* John Tate (Australian politician) (1895–1977)
* John Tate (actor) (1915–1979), Australian act ...
was the
Tate–Poitou duality In mathematics, Tate duality or Poitou–Tate duality is a duality theorem for Galois cohomology groups of modules over the Galois group of an algebraic number field or local field, introduced by and .
Local Tate duality
For a ''p''-adic local f ...
result.
Technically speaking, ''G'' may be a
profinite group In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.
The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. ...
, in which case the definitions need to be adjusted to allow only continuous cochains.
References
* , translation of ''Cohomologie Galoisienne'', Springer-Verlag Lecture Notes 5 (1964).
*
*
Algebraic number theory
Class field theory
Cohomology theories
Galois theory
Homological algebra
{{numtheory-stub