Infinite Descent
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions. Typically, one shows that if a solution to a problem existed, which in some sense was related to one or more natural numbers, it would necessarily imply that a second solution existed, which was related to one or more 'smaller' natural numbers. This in turn would imply a third solution related to smaller natural numbers, implying a fourth solution, therefore a fifth solution, and so on. However, there cannot be an infinity of ever-smaller natural numbers, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inversive Geometry
In geometry, inversive geometry is the study of ''inversion'', a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842–3) and Kelvin (1845). The concept of inversion can be generalized to higher-dimensional spaces. Inversion in a circle Inverse of a point To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point ''P'' with respect to a ''reference circle (Ø)'' with center ''O'' and radius ''r'' is a point ''P'', lying on the ray from ''O'' through ''P'' such that :OP \cdot OP^ = r^2. This is calle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Root Of 2
The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as \sqrt or 2^. It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the ''principal'' square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a Unit square, square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational number, irrational. The fraction (≈ 1.4142857) is sometimes used as a good Diophantine approximation, rational approximation with a reasonably small denominator. Sequence in the On-Line Encyclopedia of Integer Sequences consists of the digits in the decimal expansion of the square root of 2, here truncated to 60 decimal places: : History The Babylonian clay tablet YBC 7289 (–1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mordell–Weil Theorem
In mathematics, the Mordell–Weil theorem states that for an abelian variety A over a number field K, the group A(K) of ''K''-rational points of A is a finitely-generated abelian group, called the Mordell–Weil group. The case with A an elliptic curve E and K the field of rational numbers is Mordell's theorem, answering a question apparently posed by Henri Poincaré around 1901; it was proved by Louis Mordell in 1922. It is a foundational theorem of Diophantine geometry and the arithmetic of abelian varieties. History The ''tangent-chord process'' (one form of addition theorem on a cubic curve) had been known as far back as the seventeenth century. The process of infinite descent of Fermat was well known, but Mordell succeeded in establishing the finiteness of the quotient group E(\mathbb)/2E(\mathbb) which forms a major step in the proof. Certainly the finiteness of this group is a necessary condition for E(\mathbb) to be finitely generated; and it shows that the rank is fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galois Cohomology
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated with a field extension ''L''/''K'' acts in a natural way on some abelian groups, for example those constructed directly from ''L'', but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor. History The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of ideal class groups in algebraic number theory was one way to formulate class field theory, at the time it was in the process of ridding itself of connections to L-functions. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a non-abelian theory. It was formulated abstractly as a theory of c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Height Function
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the ''classical'' or ''naive height'' over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g. for the coordinates ), but in a logarithmic scale. Significance Height functions allow mathematicians to count objects, such as rational points, that are otherwise infinite in quantity. For instance, the set of rational numbers of naive height (the maximum of the numerator and denominator when expressed in lowest terms) below any given constant is finite despite the set of rational numbers being infinite. In this sense, height functions can be used to prove asymptotic results such as Baker's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is due both to his original contributions to a remarkably broad spectrum of mathematical theories, and to the mark he left on mathematical practice and style, through some of his own works as well as through the Bourbaki group, of which he was one of the principal founders. Life André Weil was born in Paris to agnostic Alsatian Jewish parents who fled the annexation of Alsace-Lorraine by the German Empire after the Franco-Prussian War in 1870–71. Simone Weil, who would later become a famous philosopher, was Weil's younger sister and only sibling. He studied in Paris, Rome and Göttingen and received his doctorate in 1928. While in Germany, Weil befriended Carl Ludwig Siegel. Starting in 1930, he spent two academic years at Aligarh Mu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Variety
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any Field (mathematics), field; the variety is then said to be defined ''over'' that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those Complex torus, complex tori that can be holomorphic, holomorphically embedded into a complex projective space. Abelian varieties defined over algebraic number fields are a special case, which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finitely-generated Abelian Group
In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n_s. In this case, we say that the set \ is a ''generating set'' of G or that x_1,\dots, x_s ''generate'' G. So, finitely generated abelian groups can be thought of as a generalization of cyclic groups. Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified. Examples * The integers, \left(\mathbb,+\right), are a finitely generated abelian group. * The integers modulo n, \left(\mathbb/n\mathbb,+\right), are a finite (hence finitely generated) abelian group. * Any direct sum of finitely many finitely generated abelian groups is again a finitely generated abelian group. * Every lattice forms a finitely generated free abelian group. There are no other examples (up to isomorphism) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mordell
Louis Joel Mordell (28 January 1888 – 12 March 1972) was an American-born British mathematician, known for his research in number theory. He was born in Philadelphia, United States, in a Jewish family of Lithuanian extraction. Education Mordell was educated at the University of Cambridge where he completed the Cambridge Mathematical Tripos as a student of St John's College, Cambridge, starting in 1906 after successfully passing the scholarship examination. He graduated as third wrangler in 1909. Research After graduating Mordell began independent research into particular diophantine equations: the question of integer points on the cubic curve, and special case of what is now called a Thue equation, the Mordell equation :''y''2 = ''x''3 + ''k''. He took an appointment at Birkbeck College, London in 1913. During World War I he was involved in war work, but also produced one of his major results, proving in 1917 the multiplicative property of Srinivasa Ramanujan's tau-fun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
L-function
In mathematics, an ''L''-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An ''L''-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an ''L''-function via analytic continuation. The Riemann zeta function is an example of an ''L''-function, and some important conjectures involving ''L''-functions are the Riemann hypothesis and its generalizations. The theory of ''L''-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory. In it, broad generalisations of the Riemann zeta function and the ''L''-series for a Dirichlet character are constructed, and their general properties, in most cases still out of reach of proof, are set out in a systematic way. Because of the Euler product formula there is a deep connection between ''L''-functions and the theory of prime numbers. The mathematical field tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and Algebraic function field, function fields. These properties, such as whether a ring (mathematics), ring admits unique factorization, the behavior of ideal (ring theory), ideals, and the Galois groups of field (mathematics), fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |