HOME
*



picture info

Cofunction
In mathematics, a function ''f'' is cofunction of a function ''g'' if ''f''(''A'') = ''g''(''B'') whenever ''A'' and ''B'' are complementary angles. This definition typically applies to trigonometric functions. The prefix "co-" can be found already in Edmund Gunter's ''Canon triangulorum'' (1620). For example, sine (Latin: ''sinus'') and cosine (Latin: ''cosinus'', ''sinus complementi'') are cofunctions of each other (hence the "co" in "cosine"): The same is true of secant (Latin: ''secans'') and cosecant (Latin: ''cosecans'', ''secans complementi'') as well as of tangent (Latin: ''tangens'') and cotangent (Latin: ''cotangens'', ''tangens complementi''): These equations are also known as the cofunction identities. This also holds true for the versine (versed sine, ver) and coversine (coversed sine, cvs), the vercosine (versed cosine, vcs) and covercosine (coversed cosine, cvc), the haversine (half-versed sine, hav) and hacoversine (half-coversed sine, hcv), the havercosin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Haversine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) s. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the of navigation.


Overview

The versine
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hacovercosine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) s. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the of navigation.


Overview

The versine
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hacoversine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) s. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the of navigation.


Overview

The versine
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covercosine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) s. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the of navigation.


Overview

The versine
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vercosine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) s. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the of navigation.


Overview

The versine
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coversine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) s. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the of navigation.


Overview

The versine
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Versine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit Āryabhaṭa's sine table , ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) trigonometric tables. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the haversine formula of navigation.


Overview

The versine or versed sine is a trigonometric function already appearing in some of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Havercosine
The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit Āryabhaṭa's sine table , ''Aryabhatia'',The Āryabhaṭīya by Āryabhaṭa
Section I) trigonometric tables. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the haversine formula of navigation.


Overview

The versine or versed sine is a trigonometric function already appearing in some of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jacobi Elliptic Cosine
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation \operatorname for \sin. The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by . Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later. Overview There are twelve Jacobi elliptic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cologarithm
In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of is , or . The logarithm of to ''base''  is denoted as , or without parentheses, , or even without the explicit base, , when no confusion is possible, or when the base does not matter such as in big O notation. The logarithm base is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number  as its base; its use is widespread in mathematics and physics, because of its very simple derivative. The binary logarithm uses base and is frequently used in computer science. Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations. They were rapidly adopted by navigators, scientists, engineers, surveyors and others to perform high-accu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Functions
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola. Also, similarly to how the derivatives of and are and respectively, the derivatives of and are and respectively. Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity. The basic hyperbolic functions are: * hyperbolic sine "" (), * hyperbolic cosine "" (),''Collins Concise Dictionary'', p. 328 from which are derived: * hyperbolic tangent "" (), * hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Excosecant
The exsecant (exsec, exs) and excosecant (excosec, excsc, exc) are trigonometric functions defined in terms of the secant and cosecant functions. They used to be important in fields such as surveying, railway engineering, civil engineering, astronomy, and spherical trigonometry and could help improve accuracy, but are rarely used today except to simplify some calculations. Exsecant The exsecant, (Latin: ''secans exterior'') also known as exterior, external, outward or outer secant and abbreviated as exsec or exs, is a trigonometric function defined in terms of the secant function sec(''θ''): \operatorname(\theta) = \sec(\theta) - 1 = \frac - 1. The name ''exsecant'' can be understood from a graphical construction of the various trigonometric functions from a unit circle, such as was used historically. sec(''θ'') is the secant line , and the exsecant is the portion of this secant that lies ''exterior'' to the circle (''ex'' is Latin for ''out of''). Excosecant A rela ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]