HOME
*





CLMUL Instruction Set
Carry-less Multiplication (CLMUL) is an extension to the x86 instruction set used by microprocessors from Intel and AMD which was proposed by Intel in March 2008 and made available in the Intel Westmere processors announced in early 2010. Mathematically, the instruction implements multiplication of polynomials over the finite field GF(2) where the bitstring a_0a_1\ldots a_ represents the polynomial a_0 + a_1X + a_2X^2 + \cdots + a_X^. The CLMUL instruction also allows a more efficient implementation of the closely related multiplication of larger finite fields GF(2''k'') than the traditional instruction set. One use of these instructions is to improve the speed of applications doing block cipher encryption in Galois/Counter Mode, which depends on finite field GF(2''k'') multiplication. Another application is the fast calculation of CRC values, including those used to implement the LZ77 sliding window DEFLATE algorithm in zlib and pngcrush. ARMv8 also has a version of CLMUL. SP ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microprocessor
A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit. The integrated circuit is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results (also in binary form) as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system. The integration of a whole CPU onto a single or a few integrated circuits using Very-Large-Scale Integration (VLSI) greatly reduced the cost of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AVX-512
AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Extensions SIMD instructions for x86 instruction set architecture (ISA) proposed by Intel in July 2013, and implemented in Intel's Xeon Phi x200 (Knights Landing) and Skylake-X CPUs; this includes the Core-X series (excluding the Core i5-7640X and Core i7-7740X), as well as the new Xeon Scalable Processor Family and Xeon D-2100 Embedded Series. AVX-512 consists of multiple extensions that may be implemented independently. This policy is a departure from the historical requirement of implementing the entire instruction block. Only the core extension AVX-512F (AVX-512 Foundation) is required by all AVX-512 implementations. Besides widening most 256-bit instructions, the extensions introduce various new operations, such as new data conversions, scatter operations, and permutations. The number of AVX registers is increased from 16 to 32, and eight new "mask registers" are added, which allow for variable selection and blendi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Excavator (microarchitecture)
AMD Excavator Family 15h is a microarchitecture developed by Advanced Micro Devices, AMD to succeed Steamroller (microarchitecture), Steamroller Family 15h for use in AMD APU processors and normal CPUs. On October 12, 2011, AMD revealed Excavator to be the code name for the fourth-generation Bulldozer (microarchitecture), Bulldozer-derived core. The Excavator-based Accelerated processing unit, APU for mainstream applications is called ''Carrizo'' and was released in 2015. The ''Carrizo'' APU is designed to be Heterogeneous System Architecture, HSA 1.0 compliant. An Excavator-based APU and CPU variant named ''Toronto'' for server and enterprise markets was also produced. Excavator was the final revision of the Bulldozer (microarchitecture)#Revisions, "Bulldozer" family, with two new microarchitectures replacing Excavator a year later. Excavator was succeeded by the x86-64 Zen (first generation microarchitecture), Zen architecture in early 2017. Architecture Excavator added hardwar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steamroller (microarchitecture)
AMD Steamroller Family 15h is a microarchitecture developed by AMD for AMD APUs, which succeeded Piledriver in the beginning of 2014 as the third-generation Bulldozer-based microarchitecture. Steamroller APUs continue to use two-core modules as their predecessors, while aiming at achieving greater levels of parallelism. Microarchitecture ''Steamroller'' still features two-core modules found in ''Bulldozer'' and ''Piledriver'' designs called clustered multi-thread (CMT), meaning that one module is marketed as a dual-core processor. The focus of ''Steamroller'' is for greater parallelism. Improvements center on independent instruction decoders for each core within a module, 25% more of the maximum width dispatches per thread, better instruction schedulers, improved perceptron branch predictor, larger and smarter caches, up to 30% fewer instruction cache misses, branch misprediction rate reduced by 20%, dynamically resizable L2 cache, micro-operations queue, more internal regist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Piledriver (microarchitecture)
AMD Piledriver Family 15h is a microarchitecture developed by AMD as the second-generation successor to Bulldozer. It targets desktop, mobile and server markets. It is used for the AMD Accelerated Processing Unit (formerly Fusion), AMD FX, and the Opteron line of processors. The changes over Bulldozer are incremental. Piledriver uses the same "module" design. Its main improvements are to branch prediction and FPU/integer scheduling, along with a switch to hard-edge flip-flops to improve power consumption. This resulted in clock speed gains of 8–10% and a performance increase of around 15% with similar power characteristics. FX-9590 is around 40% faster than Bulldozer-based FX-8150, mostly because of higher clock speed. Products based on Piledriver were first released on 15 May 2012 with the AMD Accelerated Processing Unit (APU), code-named Trinity, series of mobile products. APUs aimed at desktops followed in early October 2012 with Piledriver-based FX-series CPUs released l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bulldozer (microarchitecture)
The AMD Bulldozer Family 15h is a microprocessor microarchitecture for the FX and Opteron line of processors, developed by AMD for the desktop and server markets. Bulldozer is the codename for this family of microarchitectures. It was released on October 12, 2011, as the successor to the K10 microarchitecture. Bulldozer is designed from scratch, not a development of earlier processors. The core is specifically aimed at computing products with TDPs of 10 to 125 watts. AMD claims dramatic performance-per-watt efficiency improvements in high-performance computing (HPC) applications with Bulldozer cores. The ''Bulldozer'' cores support most of the instruction sets implemented by Intel processors (Sandy Bridge) available at its introduction (including SSE4.1, SSE4.2, AES, CLMUL, and AVX) as well as new instruction sets proposed by AMD; ABM, XOP, FMA4 and F16C. Only Bulldozer GEN4 (Excavator) supports AVX2 instruction sets. Overview According to AMD, Bulldozer-based CPU ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Puma (microarchitecture)
The Puma Family 16h is a low-power microarchitecture by AMD for its APUs. It succeeds the Jaguar as a second-generation version, targets the same market, and belongs to the same AMD architecture Family 16h. The ''Beema'' line of processors are aimed at low-power notebooks, and ''Mullins'' are targeting the tablet sector. Design The Puma cores use the same microarchitecture as Jaguar, and inherits the design: * Out-of-order execution and Speculative execution, up to 4 CPU cores * Two-way integer execution * Two-way 128-bit wide floating-point and packed integer execution * Integer hardware divider * Puma does not feature clustered multi-thread (CMT), meaning that there are no "modules" * Puma does not feature Heterogeneous System Architecture or zero-copy * 32 KiB instruction + 32 KiB data L1 cache per core * 1–2 MiB unified L2 cache shared by two or four cores * Integrated single channel memory controller supporting 64bit DDR3L * 3.1 mm2 area per core ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jaguar (microarchitecture)
The AMD Jaguar Family 16h is a low-power microarchitecture designed by AMD. It is used in APUs succeeding the Bobcat Family microarchitecture in 2013 and being succeeded by AMD's Puma architecture in 2014. It is two-way superscalar and capable of out-of-order execution. It is used in AMD's Semi-Custom Business Unit as a design for custom processors and is used by AMD in four product families: ''Kabini'' aimed at notebooks and mini PCs, ''Temash'' aimed at tablets, ''Kyoto'' aimed at micro-servers, and the ''G-Series'' aimed at embedded applications. Both the PlayStation 4 and the Xbox One use chips based on the Jaguar microarchitecture, with more powerful GPUs than AMD sells in its own commercially available Jaguar APUs. Design * 32 KiB instruction + 32 KiB data L1 cache per core, L1 cache includes parity error detection * 16-way, 1–2 MiB unified L2 cache shared by two or four cores, L2 cache is protected from errors by the use of error correcting code * Out ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goldmont
Goldmont is a microarchitecture for low-power Atom, Celeron and Pentium branded processors used in systems on a chip (SoCs) made by Intel. They allow only one thread per core. The ''Apollo Lake'' platform with 14 nm Goldmont core was unveiled at the Intel Developer Forum (IDF) in Shenzhen, China, April 2016. The Goldmont architecture borrows heavily from the Skylake Core processors, so it offers a more than 30 percent performance boost compared to the previous Braswell platform, and it can be used to implement power-efficient low-end devices including Cloudbooks, 2-in-1 netbooks, small PCs, IP cameras, and in-car entertainment systems. Design Goldmont is the 2nd generation out-of-order low-power Atom microarchitecture designed for the entry level desktop and notebook computers. Goldmont is built on the 14 nm manufacturing process and supports up to four cores for the consumer devices. It includes the Intel Gen9 graphics architecture introduced with the Skylake. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Skylake (microarchitecture)
Skylake is the codename used by Intel for a processor microarchitecture that was launched in August 2015 succeeding the Broadwell microarchitecture. Skylake is a microarchitecture redesign using the same 14 nm manufacturing process technology as its predecessor, serving as a tock in Intel's tick–tock manufacturing and design model. According to Intel, the redesign brings greater CPU and GPU performance and reduced power consumption. Skylake CPUs share their microarchitecture with Kaby Lake, Coffee Lake, Cannon Lake, Whiskey Lake, and Comet Lake CPUs. Skylake is the last Intel platform on which Windows earlier than Windows 10 will be officially supported by Microsoft, although enthusiast-created modifications exist that allow Windows 8.1 and earlier to continue to receive Windows Updates on later platforms. Some of the processors based on the Skylake microarchitecture are marketed as 6th-generation Core. Intel officially declared end of life and discontinued Sk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Anandtech
''AnandTech'' is an online computer hardware magazine owned by Future plc. It was founded in 1997 by then-14-year-old Anand Lal Shimpi, who served as CEO and editor-in-chief until August 30, 2014, with Ryan Smith replacing him as editor-in-chief. The web site is a source of hardware reviews for off-the-shelf components and exhaustive benchmarking, targeted towards computer building enthusiasts, but later expanded to cover mobile devices such as smartphones and tablets.For instance by: * * * * * Its investigative articles have been cited by other technology news sites like PC Magazine and The Inquirer. Some of their articles on mass-market products such as mobile phones are syndicated by CNNMoney. The large accompanying forum is recommended by some books for bargain hunting in the technology field. AnandTech was acquired by Purch on 17 December 2014. Purch was acquired by Future in 2018. History In its early stages, Matthew Witheiler served as co-owner and Senior Hardware ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Broadwell (microarchitecture)
Broadwell is the fifth generation of the Intel Core Processor. It is Intel's codename for the 14 nanometer die shrink of its Haswell microarchitecture. It is a "tick" in Intel's tick–tock principle as the next step in semiconductor fabrication. Like some of the previous tick-tock iterations, Broadwell did not completely replace the full range of CPUs from the previous microarchitecture ( Haswell), as there were no low-end desktop CPUs based on Broadwell. Some of the processors based on the Broadwell microarchitecture are marketed as "5th-generation Core" i3, i5 and i7 processors. This moniker is however not used for marketing of the Broadwell-based Celeron, Pentium or Xeon chips. This microarchitecture also introduced the Core M processor branding. Broadwell is the last Intel platform on which Windows 7 is supported by either Intel or Microsoft; however, third-party hardware vendors have offered limited Windows 7 support on more recent platforms. Broadwell's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]