Braided Hopf Algebra
   HOME





Braided Hopf Algebra
In mathematics, a braided Hopf algebra is a Hopf algebra in a braided monoidal category. The most common braided Hopf algebras are objects in a Yetter–Drinfeld category of a Hopf algebra ''H'', particularly the Nichols algebra of a braided vector space in that category. ''The notion should not be confused with quasitriangular Hopf algebra.'' Definition Let ''H'' be a Hopf algebra over a field ''k'', and assume that the antipode of ''H'' is bijective. A Yetter–Drinfeld module ''R'' over ''H'' is called a braided bialgebra in the Yetter–Drinfeld category ^H_H\mathcal if * (R,\cdot ,\eta ) is a unital associative algebra, where the multiplication map \cdot :R\times R\to R and the unit \eta :k\to R are maps of Yetter–Drinfeld modules, * (R,\Delta ,\varepsilon ) is a coassociative coalgebra with counit \varepsilon , and both \Delta and \varepsilon are maps of Yetter–Drinfeld modules, * the maps \Delta :R\to R\otimes R and \varepsilon :R\to k are algebra maps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coalgebra
In mathematics, coalgebras or cogebras are structures that are dual (in the category-theoretic sense of reversing arrows) to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by (vector space) duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions ( see below). Coalgebras occur naturally in a number of contexts (for example, representation theory, universal enveloping algebras and group schemes). There are also F-coalgebras, with important applications in computer science. Informal discussion One frequently recurring example of coalgebras occurs in representation theory, and in particular, in the representation theory of the rotation group. A primary task, of practical use in physics, is to obtain combinations of systems with different states of ang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shahn Majid
Shahn Majid (born 1960 in Patna, Bihar, India) is an English pure mathematician and theoretical physicist, trained at Cambridge University and Harvard University and, since 2001, a professor of mathematics at the School of Mathematical Sciences, Queen Mary, University of London. Majid is best known for his pioneering work on quantum groups where he introduced one of the two main known classes of these objects and worked on all aspects of their theory. His 1995 textbook ''Foundations of Quantum Group Theory'' is a standard text still used by researchers today. He also pioneered a quantum groups approach to noncommutative geometry and the use of such methods as a route to quantum gravity, leading in 1994 to the first model with testable predictions of quantum spacetime. He is also known for a range of results in algebra and category theory, notably for his theory of braided Hopf algebras and for a new view of the octonions. Although many regard Majid as a pure mathematician, his mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra over a field, algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing ''V'', in the sense of the corresponding universal property (see #Adjunction and universal property, below). The tensor algebra is important because many other algebras arise as quotient associative algebra, quotient algebras of ''T''(''V''). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bi-algebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. Definition Let G be a group, written multiplicatively, and let R be a ring. The group ring of G ove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Biproduct
In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide for finite collections of objects. The biproduct is a generalization of finite direct sums of modules. Definition Let C be a category with zero morphisms. Given a finite (possibly empty) collection of objects ''A''1, ..., ''A''''n'' in C, their ''biproduct'' is an object A_1 \oplus \dots \oplus A_n in C together with morphisms *p_k \!: A_1 \oplus \dots \oplus A_n \to A_k in C (the ''projection morphisms'') *i_k \!: A_k \to A_1 \oplus \dots \oplus A_n (the ''embedding morphisms'') satisfying *p_k \circ i_k = 1_, the identity morphism of A_k, and *p_l \circ i_k = 0, the zero morphism A_k \to A_l, for k \neq l, and such that *\left( A_1 \oplus \dots \oplus A_n, p_k \right) is a product for the A_k, and *\left( A_1 \oplus \dots \oplus A_n, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coalgebra
In mathematics, coalgebras or cogebras are structures that are dual (in the category-theoretic sense of reversing arrows) to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by (vector space) duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions ( see below). Coalgebras occur naturally in a number of contexts (for example, representation theory, universal enveloping algebras and group schemes). There are also F-coalgebras, with important applications in computer science. Informal discussion One frequently recurring example of coalgebras occurs in representation theory, and in particular, in the representation theory of the rotation group. A primary task, of practical use in physics, is to obtain combinations of systems with different states of ang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bialgebra
In mathematics, a bialgebra over a Field (mathematics), field ''K'' is a vector space over ''K'' which is both a unital algebra, unital associative algebra and a coalgebra, counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are Coalgebra#Further concepts and facts, coalgebra morphisms. (These statements are equivalent since they are expressed by the same commutative diagrams.) Similar bialgebras are related by bialgebra homomorphisms. A bialgebra homomorphism is a linear map that is both an algebra and a coalgebra homomorphism. As reflected in the symmetry of the commutative diagrams, the definition of bialgebra is Dual (category theory), self-dual, so if one can define a Dual space, dual of ''B'' (which is always possible if ''B'' is finite-dimensional), t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associative Algebra
In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of ''K''). The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a module or vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a commutative ring ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra for which the multiplication is commutative, or, equivalently, an associative algebra that is also a commutative ring. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hopf Algebra
In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously a ( unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations. Hopf algebras occur naturally in algebraic topology, where they originated and are related to the H-space concept, in group scheme theory, in group theory (via the concept of a group ring), and in numerous other places, making them probably the most familiar type of bialgebra. Hopf algebras are also studied in their own right, with much work on specific classes of examples on the one hand and classification problems o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quasitriangular Hopf Algebra
In mathematics, a Hopf algebra, ''H'', is quasitriangularMontgomery & Schneider (2002), p. 72 if there exists an invertible element, ''R'', of H \otimes H such that :*R \ \Delta(x)R^ = (T \circ \Delta)(x) for all x \in H, where \Delta is the coproduct on ''H'', and the linear map T : H \otimes H \to H \otimes H is given by T(x \otimes y) = y \otimes x, :*(\Delta \otimes 1)(R) = R_ \ R_, :*(1 \otimes \Delta)(R) = R_ \ R_, where R_ = \phi_(R), R_ = \phi_(R), and R_ = \phi_(R), where \phi_ : H \otimes H \to H \otimes H \otimes H, \phi_ : H \otimes H \to H \otimes H \otimes H, and \phi_ : H \otimes H \to H \otimes H \otimes H, are algebra morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...s determined by :\phi_(a \otimes b) = a \otimes b \otimes 1, :\phi_(a \otimes b) = a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]