Group Ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. Definition Let ''G'' be a group, written multiplicatively, and let ''R'' be a ring. The group ring of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Vector Space
Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) * ''Real'' (Belinda Carlisle album) (1993) * ''Real'' (Gorgon City EP) (2013) * ''Real'' (IU EP) (2010) * ''Real'' (Ivy Queen album) (2004) * ''Real'' (Mika Nakashima album) (2013) * ''Real'' (Ednita Nazario album) (2007) * ''Real'' (Jodie Resther album), a 2000 album by Jodie Resther * ''Real'' (Michael Sweet album) (1995) * ''Real'' (The Word Alive album) (2014) * ''Real'', a 2002 album by Israel Houghton recording as Israel & New Breed Songs * "Real" (Goo Goo Dolls song) (2008) * "Real" (Gorgon City song) (2013) * "Real" (Plumb song) (2004) * "Real" (Vivid song) (2012) * "Real" (James Wesley song) (2010) * "Real", a song by Kendrick Lamar from ''Good Kid, M.A.A.D City'' * "Real", a song by NF from ''Therapy Session'' * "Re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cofinitely
In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but it is countable, then one says the set is cocountable. These arise naturally when generalizing structures on finite sets to infinite sets, particularly on infinite products, as in the product topology or direct sum. This use of the prefix "" to describe a property possessed by a set's mplement is consistent with its use in other terms such as " meagre set". Boolean algebras The set of all subsets of X that are either finite or cofinite forms a Boolean algebra, which means that it is closed under the operations of union, intersection, and complementation. This Boolean algebra is the on X. A Boolean algebra A has a unique non-principal ultrafilter (that is, a maximal filter not generated by a single element of the algebra) if and only if there exists an infinite set X such that A i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The choice of which function is reflected and shifted before the integral does not change the integral result (see #Properties, commutativity). The integral is evaluated for all values of shift, producing the convolution function. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution (f*g) differs from cross-correlation (f \star g) only in that either or is reflected about the y-axis in convolution; thus it is a cross-c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Basis Vector
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the ''dimension'' of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Definition A basis of a vector space over a field (such as the real numbers or the complex numbers ) is a linearly independent subset of that spans . This mean ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Vector Space
Free may refer to: Concept * Freedom, having the ability to do something, without having to obey anyone/anything * Freethought, a position that beliefs should be formed only on the basis of logic, reason, and empiricism * Emancipate, to procure political rights, as for a disenfranchised group * Free will, control exercised by rational agents over their actions and decisions * Free of charge, also known as gratis. See Gratis vs libre. Computing * Free (programming), a function that releases dynamically allocated memory for reuse * Free format, a file format which can be used without restrictions * Free software, software usable and distributable with few restrictions and no payment * Freeware, a broader class of software available at no cost Mathematics * Free object ** Free abelian group ** Free algebra ** Free group ** Free module ** Free semigroup * Free variable People * Free (surname) * Free (rapper) (born 1968), or Free Marie, American rapper and media personalit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Contraposition
In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as Proof by contrapositive, proof by contraposition. The contrapositive of a statement has its Antecedent (logic), antecedent and consequent Inverse (logic), inverted and Conversion (logic), flipped. Material conditional, Conditional statement P \rightarrow Q. In Logical connective, formulas: the contrapositive of P \rightarrow Q is \neg Q \rightarrow \neg P . If ''P'', Then ''Q''. — If not ''Q'', Then not ''P''. ''"''If ''it is raining,'' then ''I wear my coat" —'' "If ''I don't wear my coat,'' then ''it isn't raining."'' The law of contraposition says that a conditional statement is true if, and only if, its contrapositive is true. The contrapositive ( \neg Q \rightarrow \neg P ) can be compared with three other statements: ;Inverse (logic), Inversion (the inverse), \neg P \rightarrow \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Ring
In abstract algebra, a nonzero ring ''R'' is a prime ring if for any two elements ''a'' and ''b'' of ''R'', ''arb'' = 0 for all ''r'' in ''R'' implies that either ''a'' = 0 or ''b'' = 0. This definition can be regarded as a simultaneous generalization of both integral domains and simple rings. Although this article discusses the above definition, prime ring may also refer to the minimal non-zero subring of a field, which is generated by its identity element 1, and determined by its characteristic. For a characteristic 0 field, the prime ring is the integers, and for a characteristic ''p'' field (with ''p'' a prime number) the prime ring is the finite field of order ''p'' (cf. Prime field).Page 90 of Equivalent definitions A ring ''R'' is prime if and only if the zero ideal is a prime ideal in the noncommutative sense. This being the case, the equivalent conditions for prime ideals yield the following equivalent conditions for ''R'' to be a prime ring: *For any two ideals ''A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zero Divisors
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero divisor if there exists a nonzero in such that . This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor. An element that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero such that may be different from the nonzero such that ). If the ring is commutative, then the left and right zero divisors are the same. An element of a ring that is not a left zero divisor is called left regular or left cancellable. Similarly, an element of a ring that is not a right zero divisor is called right regular or right cancellable. An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subring
In mathematics, a subring of ''R'' is a subset of a ring that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and which shares the same multiplicative identity as ''R''. For those who define rings without requiring the existence of a multiplicative identity, a subring of ''R'' is just a subset of ''R'' that is a ring for the operations of ''R'' (this does imply it contains the additive identity of ''R''). The latter gives a strictly weaker condition, even for rings that do have a multiplicative identity, so that for instance all ideals become subrings (and they may have a multiplicative identity that differs from the one of ''R''). With definition requiring a multiplicative identity (which is used in this article), the only ideal of ''R'' that is a subring of ''R'' is ''R'' itself. Definition A subring of a ring is a subset ''S'' of ''R'' that preserves the structure of the ring, i.e. a ring with . Equivalently, it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |