HOME
*



picture info

Be Star
Be stars are a heterogeneous set of stars with B spectral types and emission lines. A narrower definition, sometimes referred to as ''classical Be stars'', is a non-supergiant B star whose spectrum has, or had at some time, one or more Balmer emission lines. Definition and classification Many stars have B-type spectra and show hydrogen emission lines, including many supergiants, Herbig Ae/Be stars, mass-transferring binary systems, and B stars. It is preferred to restrict usage of the term Be star to non-supergiant stars showing one or more Balmer series lines in emission. These are sometimes referred to as classical Be stars. The emission lines may be present only at certain times. Although the Be type spectrum is most strongly produced in class B stars, it is also detected in O and A shell stars, and these are sometimes included under the "Be star" banner. Be stars are primarily considered to be main sequence stars, but a number of subgiants and giant stars are also inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Achernar
Achernar is the brightest star in the constellation of Eridanus, and the ninth-brightest in the night sky. It has the Bayer designation Alpha Eridani, which is Latinized from α Eridani and abbreviated Alpha Eri or α Eri. The name Achernar applies to the primary component of a binary system. The two components are designated Alpha Eridani A (the primary) and B (the secondary), with the latter known informally as Achernar B. As determined by the ''Hipparcos'' astrometry satellite, this system is located at a distance of approximately from the Sun. Of the ten apparent brightest stars in the night-time sky, Alpha Eridani is the hottest and bluest in color, due to Achernar being of spectral type B. Achernar has an unusually rapid rotational velocity, causing it to become oblate in shape. The secondary is smaller, of spectral type A, and orbits Achernar at a distance of . Nomenclature ''α Eridani'' ( Latinised to ''Alpha Eridani'') is the system's Bayer designation. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgiant
A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star. Yerkes luminosity class IV The term subgiant was first used in 1930 for class G and early K stars with absolute magnitudes between +2.5 and +4. These were noted as being part of a continuum of stars between obvious main-sequence stars such as the Sun and obvious giant stars such as Aldebaran, although less numerous than either the main sequence or the giant stars. The Yerkes spectral classification system is a two-dimensional scheme that uses a letter and number combination to denote that temperature of a star (e.g. A5 or M1) and a Roman numeral to indicate the luminosity relative to other stars of the same temperature. Luminosity class IV stars are the subgiants, located between main-sequence stars (luminosity class&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Star Types
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The ''spectral class'' of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters ''O'', ''B'', ''A'', ''F'', ''G'', ''K'', and ''M'', a sequence from the hottest (''O'' type) to the coolest (''M'' type). Each letter class is then subdivided ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lambda Eridani Variable
A Lambda Eridani Variable is a class of Be stars that show small amplitude variations of a few hundredths of a magnitude. The variations are highly regular with periods between 0.5 and 2.0 days, and they were initially described as periodic Be stars. Lambda Eridani is an example and the prototype. This has been ascribed to non-radial pulsations, inhomogeneous rotating discs, or the rotation of the star itself. These stars are rarely classified, or are classified incorrectly. The General Catalogue of Variable Stars does not have a type for λ Eridani variables, only GCAS for Gamma Cassiopeiae variables and BE for non-GCAS Be star variables. λ Eridani itself is incorrectly listed as a Beta Cephei variable. The AAVSO The American Association of Variable Star Observers (AAVSO) is an international nonprofit organization, founded in 1911, focused on coordinating, analyzing, publishing, and archiving variable star observations made largely by amateur astronomers ... Internatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Catalogue Of Variable Stars
The General Catalogue of Variable Stars (GCVS) is a list of variable stars. Its first edition, containing 10,820 stars, was published in 1948 by the Academy of Sciences of the USSR and edited by B. V. Kukarkin and P. P. Parenago. Second and third editions were published in 1958 and 1968; the fourth edition, in three volumes, was published 1985–1987. It contained 28,435 stars. A fourth volume of the fourth edition containing reference tables was later published, as well as a fifth volume containing variable stars outside the Galaxy. The last edition (GCVS v5.1) based on data compiled in 2015 gathers 52,011 variable stars. The most up-to-date version of the GCVS is available at the GCVS website. It contains improved coordinates for the variable stars in the printed fourth edition of the GCVS, as well as variable stars discovered too recently to be included in the fourth edition. An older version of the GCVS dating from 2004 is available from the VizieR A vizier ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Cassiopeiae Variable
A Gamma Cassiopeiae variable (γ Cassiopeiae variable) is a type of variable star, named for its prototype γ Cassiopeiae. Variability γ Cassiopeiae variables show irregular changes in brightness on a timescale of decades. These typically have amplitudes of the order of a magnitude. For example, γ Cassiopeiae is usually about magnitude 2.5 and has varied between magnitudes 1.6 and 3.0. The variations are associated with changes in the spectrum between normal absorption spectra and Be star spectra, often also including shell star characteristics. Pleione and γ Cassiopeiae itself are both variable stars that have intermittent shell episodes where strong shell features appear in the spectrum and the brightness increases or decreases significantly. At other times the shell is not detectable in the spectrum, and even the emission lines may disappear. The General Catalogue of Variable Stars (GCVS) categorises γ Cassiopeiae stars as eruptive variables and describes them as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angelo Secchi
Angelo Secchi (; 28 June 1818 – 26 February 1878) was an Italian Catholic priest, astronomer from the Italian region of Emilia. He was director of the observatory at the Pontifical Gregorian University (then called the Roman College) for 28 years. He was a pioneer in astronomical spectroscopy, and was one of the first scientists to state authoritatively that the Sun is a star. Biography Secchi was born in Reggio Emilia, where he studied at the Jesuit gymnasium. At the age of 16, he entered the Jesuit Order in Rome. He continued his studies at the Roman College, and demonstrated great scientific ability. In 1839, he was appointed tutor of mathematics and physics at the college. In 1841, he became professor of physics at the Jesuit College in Loreto. In 1844, he began theological studies in Rome, and was ordained a priest on 12 September 1847. In 1848, due to the Roman Revolution, the Jesuits were ordered to leave Rome. Angelo Secchi spent the next two years in the Uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Cassiopeiae
Gamma Cassiopeiae, Latinized from γ Cassiopeiae, is a bright star at the center of the distinctive "W" asterism in the northern circumpolar constellation of Cassiopeia. Although it is a fairly bright star with an apparent visual magnitude that varies from 1.6 to 3.0, it has no traditional Arabic or Latin name. It sometimes goes by the informal name Navi. Gamma Cassiopeiae is a Be star, a variable star, and a multiple star system. Based upon parallax measurements made by the Hipparcos satellite, it is located at a distance of roughly 550 light-years from Earth. Together with its common-proper-motion companion, HD 5408, the system could contain a total of eight stars. Physical properties Gamma Cassiopeiae is an eruptive variable star, whose apparent magnitude changes irregularly between +1.6 and +3.0. It is the prototype of the class of Gamma Cassiopeiae variable stars. In the late 1930s it underwent what is described as a ''shell episode'' and the brightness ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Giant Star
A giant star is a star with substantially larger radius and luminosity than a main-sequence (or ''dwarf'') star of the same surface temperature.Giant star, entry in ''Astronomy Encyclopedia'', ed. Patrick Moore, New York: Oxford University Press, 2002. . They lie above the main sequence (luminosity class V in the Yerkes spectral classification) on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III.giant, entry in ''The Facts on File Dictionary of Astronomy'', ed. John Daintith and William Gould, New York: Facts On File, Inc., 5th ed., 2006. . The terms ''giant'' and ''dwarf'' were coined for stars of quite different luminosity despite similar temperature or spectral type by Ejnar Hertzsprung about 1905. Giant stars have radii up to a few hundred times the Sun and luminosities between 10 and a few thousand times that of the Sun. Stars still more luminous than giants are referred to as supergiants and hypergiants. A hot, luminous main-sequenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Main Sequence
In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hertzsprung and Henry Norris Russell. Stars on this band are known as main-sequence stars or dwarf stars. These are the most numerous true stars in the universe and include the Sun. After condensation and ignition of a star, it generates thermal energy in its dense core region through nuclear fusion of hydrogen into helium. During this stage of the star's lifetime, it is located on the main sequence at a position determined primarily by its mass but also based on its chemical composition and age. The cores of main-sequence stars are in hydrostatic equilibrium, where outward thermal pressure from the hot core is balanced by the inward pressure of gravitational collapse from the overlying layers. The strong dependence of the rate of ene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellar Classification
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The ''spectral class'' of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters ''O'', ''B'', ''A'', ''F'', ''G'', ''K'', and ''M'', a sequence from the hottest (''O'' type) to the coolest (''M'' type). Each letter class is then subdivided ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shell Star
A shell star is a star having a spectrum that shows extremely broad absorption lines, plus some very narrow absorption lines. They typically also show some emission lines, usually from the Balmer series but occasionally of other lines. The broad absorption lines are due to rapid rotation of the photosphere, the emission lines from an equatorial disk, and the narrow absorption lines are produced when the disc is seen nearly edge-on. Shell stars have spectral types O7.5 to F5, with rotation velocities of 200–300 km/s, not far from the point when the rotational acceleration would disrupt the star. Spectrum The shell stars are defined as a group by the existence of rotationally broadened photospheric spectral lines in combination with very narrow absorption lines. Emission lines are frequently present but not regarded as a defining feature. The exact spectral lines present vary to some extent: Balmer emission lines are very common, but may be weak or absent in cooler sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]