HOME
        TheInfoList






A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star.

Yerkes luminosity class IV

The term subgiant was first used in 1930 for class G and early K stars with absolute magnitudes between +2.5 and +4. These were noted as being part of a continuum of stars between obvious main-sequence stars such as the Sun and obvious giant stars such as Aldebaran, although less numerous than either the main sequence or the giant stars.[1]

The Yerkes spectral classification system is a two-dimensional scheme that uses a letter and number combination to denote that temperature of a star (e.g. A5 or M1) and a Roman numeral to indicate the luminosity relative to other stars of the same temperature. Luminosity-class-IV stars are the subgiants, located between main-sequence stars (luminosity class V) and red giants (luminosity class III).

Rather than defining absolute features, a typical approach to determining a spectral luminosity class is to compare similar spectra against standard stars. Many line ratios and profiles are sensitive to gravity, and therefore make useful luminosity indicators, but some of the most useful spectral features for each spectral class are:[2][3]

  • O: relative strength of N iii emission and He ii absorption, strong emission is more luminous
  • B: Balmer line profiles and strength of O ii lines
  • A: Balmer line profiles, broader wings means less luminous
  • F: line strengths of Fe, Ti, and Sr
  • G: Sr and Fe line strengths, and wing widths in the Ca H and K lines
  • K: Ca H&K line profiles, Sr/Fe line ratios, and MgH and TiO line strengths
  • M: strength of the 422.6 nm Ca line and TiO bands

Morgan and Keenan listed examples of stars in luminosity class IV when they established the two-dimensional classification scheme:[2]

Later analysis showed that some of these were blended spectra from double stars and some were variable, and the standards have been expanded to many more stars, but many of the original stars are still considered standards of the subgiant luminosity class. O-class stars and stars cooler than K1 are rarely given subgiant luminosity classes.[4]

Subgiant branch

Stellar evolutionary tracks:
• the 5 M track shows a hook and a subgiant branch crossing the Hertzsprung gap
• the 2 M track shows a hook and pronounced subgiant branch
• lower-mass tracks show very short long-lasting subgiant branches

The subgiant branch is a stage in the evolution of low to intermediate mass stars. Stars with a subgiant spectral type are not always on the evolutionary subgiant branch, and vice versa. For example, the stars FK Com and 31 Com both lie in the Hertzsprung Gap and are likely evolutionary subgiants, but both are often assigned giant luminosity classes. The spectral classification can be influenced by metallicity, rotation, unusual chemical peculiarities, etc. The initial stages of the subgiant branch in a star like the sun are prolonged with little external indication of the internal changes. One approach to identifying evolutionary subgiants include chemical abundances such as Lithium which is diluted in subgiants,[5] and coronal emission strength.[6]

As the fraction of hydroge

The subgiant branch is a stage in the evolution of low to intermediate mass stars. Stars with a subgiant spectral type are not always on the evolutionary subgiant branch, and vice versa. For example, the stars FK Com and 31 Com both lie in the Hertzsprung Gap and are likely evolutionary subgiants, but both are often assigned giant luminosity classes. The spectral classification can be influenced by metallicity, rotation, unusual chemical peculiarities, etc. The initial stages of the subgiant branch in a star like the sun are prolonged with little external indication of the internal changes. One approach to identifying evolutionary subgiants include chemical abundances such as Lithium which is diluted in subgiants,[5] and coronal emission strength.[6]

As the fraction of hydrogen remaining in the core of a main sequence star decreases, the core temperature increases and so the rate of fusion increases. This causes stars to evolve slowly to higher luminosities as they age and broadens the main sequence band in the Hertzsprung–Russell diagram.

Once a main sequence star ceases to fuse hydrogen in its core, the core begins to collapse under its own weight. This causes it to increase in temperature and hydrogen fuses in a shell outside the core, which provides more energy than core hydrogen burning. Low- and intermediate-mass stars expand and cool until at about 5,000 K they begin to increase in luminosity in a stage known as the red-giant branch. The transition from the main sequence to the red giant branch is known as the subgiant branch. The shape and duration of the subgiant branch varies for stars of different masses, due to differences in the internal configuration of the star.

Very-low-mass stars

H–R diagram of the entire Hipparcos catalog

A Hertzsprung–Russell (H–R) diagram is a scatter plot of stars with temperature or spectral type on the x-axis and absolute magnitude or luminosity on the y-axis. H–R diagrams of all stars, show a clear diagonal main sequence band containing the majority of stars, a significant number of red giants (and white dwarfs if sufficiently faint stars are observed), with relatively few stars in other parts of the diagram.

Subgiants occupy a region above (i.e. more luminous than) the main sequence stars and below the giant stars. There are relatively few on most H–R diagrams because the time s

A Hertzsprung–Russell (H–R) diagram is a scatter plot of stars with temperature or spectral type on the x-axis and absolute magnitude or luminosity on the y-axis. H–R diagrams of all stars, show a clear diagonal main sequence band containing the majority of stars, a significant number of red giants (and white dwarfs if sufficiently faint stars are observed), with relatively few stars in other parts of the diagram.

Subgiants occupy a region above (i.e. more luminous than) the main sequence stars and below the giant stars. There are relatively few on most H–R diagrams because the time spent as a subgiant is much less than the time spent on the main sequence or as a giant star. Hot, class B, subgiants are barely distinguishable from the main sequence stars, while cooler subgiants fill a relatively large gap between cool main sequence stars and the red giants. Below approximately spectral type K3 the region between the main sequence and red giants is entirely empty, with no subgiants.[2]

[2]

Stellar evolutionary tracks can be plotted on an H–R diagram. For a particular mass, these trace the position of a star throughout its life, and show a track from the initial main sequence position, along the subgiant branch, to the giant branch. When an H–R diagram is plotted for a group of stars which all have the same age, such as a cluster, the subgiant branch may be visible as a band of stars between the main sequence turnoff point and the red giant branch. The subgiant branch is only visible if the cluster is sufficiently old that 1-8 M stars have evolved away from the main sequence, which requires several billion years. Globular clusters such as ω Centauri and old open clusters such as M67 are sufficiently old that they show a pronounced subgiant branch in their color–magnitude diagrams. ω Centauri actually shows several separate subgiant branches for reasons that are still not fully understood, but appear to represent stellar populations of different ages within the cluster.[13]

Variability

Several types of variable star include subgiants:

Subgiants more massive than the sun cross the Cepheid instability strip, called the first crossing since they may cross

Several types of variable star include subgiants:


mysqli_error: