HOME
*





Banach Lattice
In the mathematical disciplines of in functional analysis and order theory, a Banach lattice is a complete normed vector space with a lattice order, such that for all , the implication \Rightarrow holds, where the absolute value is defined as , x, = x \vee -x\text Examples and constructions Banach lattices are extremely common in functional analysis, and "every known example n 1948of a Banach space asalso a vector lattice." In particular: * , together with its absolute value as a norm, is a Banach lattice. * Let be a topological space, a Banach lattice and the space of continuous bounded functions from to with norm \, f\, _ = \sup_ \, f(x)\, _Y\text Then is a Banach lattice under the pointwise partial order: \Leftrightarrow(\forall x\in X)(f(x)\leq g(x))\text Examples of non-lattice Banach spaces are now known; James' space is one such.Kania, Tomasz (12 April 2017).Answerto "Banach space that is not a Banach lattice" (accessed 13 August 2022). ''Mathematics St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems (compare with numeral systems) in general (although one usually is also interested in the actual difference ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term "Fréchet space." Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete norme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Order
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These ''lattice-like'' structures all admit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Space Of Continuous Bounded Functions
In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space X with values in the real or complex numbers. This space, denoted by \mathcal(X), is a vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ... with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined by \, f\, = \sup_ , f(x), , the uniform norm. The uniform norm defines the topology of uniform convergence of functions on X. The space \mathcal(X) is a Banach algebra with respect to this norm. Properties * By Urysohn's lemma, \mathcal(X) Separating set, separates points of X: If x, y \in X are distinct points, then there is an f \in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


James Space
In the area of mathematics known as functional analysis, James' space is an important example in the theory of Banach spaces and commonly serves as useful counterexample to general statements concerning the structure of general Banach spaces. The space was first introduced in 1950 in a short paper by Robert C. James. James' space serves as an example of a space that is isometrically isomorphic to its double dual, while not being reflexive. Furthermore, James' space has a basis, while having no unconditional basis. Definition Let \mathcal denote the family of all finite increasing sequences of integers of odd length. For any sequence of real numbers x=(x_n) and p = (p_1,p_2,\ldots,p_) \in \mathcal we define the quantity : \, x\, _p := \left( x_^2 + \sum_^n (x_ - x_)^2 \right)^. James' space, denoted by J, is defined to be all elements ''x'' from ''c''0 satisfying \sup\ < \infty, endowed with the norm \, x\, := \sup\ \ (x\in \mathbf).


Propert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



picture info

Stack Exchange
Stack Exchange is a network of question-and-answer (Q&A) websites on topics in diverse fields, each site covering a specific topic, where questions, answers, and users are subject to a reputation award process. The reputation system allows the sites to be self-moderating. As of August 2019, the three most actively-viewed sites in the network are Stack Overflow, Super User, and Ask Ubuntu. All sites in the network are modeled after the initial site Stack Overflow, a Q&A site for computer programming questions created by Jeff Atwood and Joel Spolsky. Further Q&A sites in the network are established, defined and eventually if found relevant brought to creation by registered users through a special site named Area 51. User contributions since May 2, 2018 are licensed under Creative Commons Attribution-ShareAlike 4.0 International. Older content, contributed while the site used the Creative Commons Attribution-ShareAlike 3.0 Unported license or the earlier Creative Commons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Order Dual (functional Analysis)
In mathematics, specifically in order theory and functional analysis, the order dual of an ordered vector space X is the set \operatorname\left(X^*\right) - \operatorname\left(X^*\right) where \operatorname\left(X^*\right) denotes the set of all positive linear functionals on X, where a linear function f on X is called positive if for all x \in X, x \geq 0 implies f(x) \geq 0. The order dual of X is denoted by X^+. Along with the related concept of the order bound dual, this space plays an important role in the theory of ordered topological vector spaces. Canonical ordering An element f of the order dual of X is called positive if x \geq 0 implies \operatorname f(x) \geq 0. The positive elements of the order dual form a cone that induces an ordering on X^+ called the canonical ordering. If X is an ordered vector space whose positive cone C is generating (that is, X = C - C) then the order dual with the canonical ordering is an ordered vector space. The order dual is the span ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximate Identity
In mathematics, particularly in functional analysis and ring theory, an approximate identity is a net in a Banach algebra or ring (generally without an identity) that acts as a substitute for an identity element. Definition A right approximate identity in a Banach algebra ''A'' is a net \ such that for every element ''a'' of ''A'', \lim_\lVert ae_\lambda - a \rVert = 0. Similarly, a left approximate identity in a Banach algebra ''A'' is a net \ such that for every element ''a'' of ''A'', \lim_\lVert e_\lambda a - a \rVert = 0. An approximate identity is a net which is both a right approximate identity and a left approximate identity. C*-algebras For C*-algebras, a right (or left) approximate identity consisting of self-adjoint elements is the same as an approximate identity. The net of all positive elements in ''A'' of norm ≤ 1 with its natural order is an approximate identity for any C*-algebra. This is called the canonical approximate identity of a C*-algebra. Appr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniformly Convex
In mathematics, uniformly convex spaces (or uniformly rotund spaces) are common examples of reflexive space, reflexive Banach spaces. The concept of uniform convexity was first introduced by James A. Clarkson in 1936. Definition A uniformly convex space is a normed vector space such that, for every 00 such that for any two vectors with \, x\, = 1 and \, y\, = 1, the condition :\, x-y\, \geq\varepsilon implies that: :\left\, \frac\right\, \leq 1-\delta. Intuitively, the center of a line segment inside the unit ball must lie deep inside the unit ball unless the segment is short. Properties * The unit sphere can be replaced with the closed unit Ball (mathematics), ball in the definition. Namely, a normed vector space X is uniformly convex if and only if for every 00 so that, for any two vectors x and y in the closed unit ball (i.e. \, x\, \le 1 and \, y\, \le 1 ) with \, x-y\, \ge \varepsilon , one has \left\, \right\, \le 1-\delta (note that, given \varep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mean Ergodic Theorem
Ergodic theory ( Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]