HOME
*





Bag Of Words Model In Computer Vision
In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model can be applied to image classification or retrieval, by treating image features as words. In document classification, a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary. In computer vision, a ''bag of visual words'' is a vector of occurrence counts of a vocabulary of local image features. Image representation based on the BoW model To represent an image using the BoW model, an image can be treated as a document. Similarly, "words" in images need to be defined too. To achieve this, it usually includes following three steps: feature detection, feature description, and codebook generation. A definition of the BoW model can be the "histogram representation based on independent features". Content based image indexing and retrieval (CBIR) appears to be the early adopter of this image representation technique. Featu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image Classification
Computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to understand and automate tasks that the human visual system can do. Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images (the input of the retina) into descriptions of the world that make sense to thought processes and can elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory. The scientific discipline of computer vision is concerned with the theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Latent Semantic Analysis
Probabilistic latent semantic analysis (PLSA), also known as probabilistic latent semantic indexing (PLSI, especially in information retrieval circles) is a statistical technique for the analysis of two-mode and co-occurrence data. In effect, one can derive a low-dimensional representation of the observed variables in terms of their affinity to certain hidden variables, just as in latent semantic analysis, from which PLSA evolved. Compared to standard latent semantic analysis which stems from linear algebra and downsizes the occurrence tables (usually via a singular value decomposition), probabilistic latent semantic analysis is based on a mixture decomposition derived from a latent class model. Model Considering observations in the form of co-occurrences (w,d) of words and documents, PLSA models the probability of each co-occurrence as a mixture of conditionally independent multinomial distributions: : P(w,d) = \sum_c P(c) P(d, c) P(w, c) = P(d) \sum_c P(c, d) P(w, c) with c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Segmentation-based Object Categorization
The image segmentation problem is concerned with partitioning an image into multiple regions according to some homogeneity criterion. This article is primarily concerned with graph theoretic approaches to image segmentation applying graph partitioning via minimum cut or maximum cut. Segmentation-based object categorization can be viewed as a specific case of spectral clustering applied to image segmentation. Applications of image segmentation * Image compression ** Segment the image into homogeneous components, and use the most suitable compression algorithm for each component to improve compression. * Medical diagnosis ** Automatic segmentation of MRI images for identification of cancerous regions. * Mapping and measurement ** Automatic analysis of remote sensing data from satellites to identify and measure regions of interest. * Transportation ** Partition a transportation network makes it possible to identify regions characterized by homogeneous traffic states. Segm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Part-based Models
Part-based models refers to a broad class of detection algorithms used on images, in which various parts of the image are used separately in order to determine if and where an object of interest exists. Amongst these methods a very popular one is the constellation model which refers to those schemes which seek to detect a small number of features and their relative positions to then determine whether or not the object of interest is present. These models build on the original idea of Fischler and Elschlager of using the relative position of a few template matches and evolve in complexity in the work of Perona and others. These models will be covered in the constellation models section. To get a better idea of what is meant by constellation model an example may be more illustrative. Say we are trying to detect faces. A constellation model would use smaller part detectors, for instance mouth, nose and eye detectors and make a judgment about whether an image has a face based on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Datasets For Machine Learning Research
These datasets are applied for machine learning research and have been cited in peer-reviewed academic journals. Datasets are an integral part of the field of machine learning. Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to produce because of the large amount of time needed to label the data. Although they do not need to be labeled, high-quality datasets for unsupervised learning can also be difficult and costly to produce. Image data These datasets consist primarily of images or videos for tasks such as object detection, facial recognition, and multi-label classification. Facial recognition In computer vision, face images have been used extensively to develop facial recognition sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolutional Neural Network
In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of artificial neural network (ANN), most commonly applied to analyze visual imagery. CNNs are also known as Shift Invariant or Space Invariant Artificial Neural Networks (SIANN), based on the shared-weight architecture of the convolution kernels or filters that slide along input features and provide translation-equivariant responses known as feature maps. Counter-intuitively, most convolutional neural networks are not invariant to translation, due to the downsampling operation they apply to the input. They have applications in image and video recognition, recommender systems, image classification, image segmentation, medical image analysis, natural language processing, brain–computer interfaces, and financial time series. CNNs are regularized versions of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neuro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sparse Approximation
Sparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in image processing, signal processing, machine learning, medical imaging, and more. Sparse decomposition Noiseless observations Consider a linear system of equations x = D\alpha, where D is an underdetermined m\times p matrix (m < p) and x \in \mathbb^m,\alpha \in \mathbb^p. The matrix D (typically assumed to be full-rank) is referred to as the dictionary, and x is a signal of interest. The core sparse representation problem is defined as the quest for the sparsest possible representation \alpha satisfying x = D\alpha. Due to the underdetermined nature of D, this linear system admits in general infinitely many possible solutions, and among these we seek the one with the fewe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fisher Kernel
In statistical classification, the Fisher kernel, named after Ronald Fisher, is a function that measures the similarity of two objects on the basis of sets of measurements for each object and a statistical model. In a classification procedure, the class for a new object (whose real class is unknown) can be estimated by minimising, across classes, an average of the Fisher kernel distance from the new object to each known member of the given class. The Fisher kernel was introduced in 1998. It combines the advantages of generative statistical models (like the hidden Markov model) and those of discriminative methods (like support vector machines): * generative models can process data of variable length (adding or removing data is well-supported) * discriminative methods can have flexible criteria and yield better results. Derivation Fisher score The Fisher kernel makes use of the Fisher score, defined as : U_X = \nabla_ \log P(X, \theta) with ''θ'' being a set (vector) of p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constellation Model
The constellation model is a probabilistic, generative model for category-level object recognition in computer vision. Like other part-based models, the constellation model attempts to represent an object class by a set of ''N'' parts under mutual geometric constraints. Because it considers the geometric relationship between different parts, the constellation model differs significantly from appearance-only, or " bag-of-words" representation models, which explicitly disregard the location of image features. The problem of defining a generative model for object recognition is difficult. The task becomes significantly complicated by factors such as background clutter, occlusion, and variations in viewpoint, illumination, and scale. Ideally, we would like the particular representation we choose to be robust to as many of these factors as possible. In category-level recognition, the problem is even more challenging because of the fundamental problem of intra-class variation. Even if two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Correlogram
In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations r_h\, versus h\, (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram. The correlogram is a commonly used tool for checking randomness in a data set. If random, autocorrelations should be near zero for any and all time-lag separations. If non-random, then one or more of the autocorrelations will be significantly non-zero. In addition, correlograms are used in the model identification stage for Box–Jenkins autoregressive moving average time series models. Autocorrelations should be near-zero for randomness; if the analyst does not check for randomness, then the validity of many of the statistical conclusions becomes suspect. The correlogram is an excellent way of checking for such randomness. In multivariate analysis, correlation matrices shown as color-m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mercer's Condition
In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric Definite bilinear form, positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in , is one of the most notable results of the work of James Mercer (mathematician), James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite Kernel method, kernel. Introduction To explain Mercer's theorem, we first consider an important special case; see #Generalizations, below for a more general formulation. A ''kernel'', in this context, is a symmetric continuous function : K: [a,b] \times [a,b] \rightarrow \mathbb where symmetric means that K(x,y) = K(y,x) for all x,y \in [a,b]. ''K'' is said to be ''non-negative de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel Trick
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified ''feature map'': in contrast, kernel methods require only a user-specified ''kernel'', i.e., a similarity function over all pairs of data points computed using Inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing. Kernel methods owe their name to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]