Axiom Of Powerset
In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\forall x \, \exists y \, \forall z \, \in y \iff \forall w \, (w \in z \Rightarrow w \in x)/math> where ''y'' is the Power set of ''x'', \mathcal(x). In English, this says: : Given any set ''x'', there is a set \mathcal(x) such that, given any set ''z'', this set ''z'' is a member of \mathcal(x) if and only if every element of ''z'' is also an element of ''x''. More succinctly: ''for every set x, there is a set \mathcal(x) consisting precisely of the subsets of x.'' Note the subset relation \subseteq is not used in the formal definition as subset is not a primitive relation in formal set theory; rather, subset is defined in terms of set membership, \in. By the axiom of extensionality, the set \mathcal(x) is unique. The axiom of power set appears in most axiomatizations of set theory. It is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hasse Diagram Of Powerset Of 3
Hasse is both a surname and a given name. Notable people with the name include: Surname: * Clara H. Hasse (1880–1926), American botanist * Helmut Hasse (1898–1979), German mathematician * Henry Hasse (1913–1977), US writer of science fiction * Johann Adolph Hasse Johann Adolph Hasse (baptised 25 March 1699 – 16 December 1783) was an 18th-century German composer, singer and teacher of music. Immensely popular in his time, Hasse was best known for his prolific operatic output, though he also composed a co ... (1699–1783), German composer * Maria Hasse (1921–2014), German mathematician * Peter Hasse (c. 1585–1640), German organist and composer Given name or nickname: * Hans Alfredson (born 1931), Swedish actor, film director, writer and comedian * Hans Backe (born 1952), Swedish football manager * Hasse Borg (born 1953), Swedish footballer * Hasse Börjes (born 1948), Swedish speed skater * Hasse Ekman (1915-2004), Swedish film director and actor * Hans Wind (1919†... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Membership
In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. Sets Writing A = \ means that the elements of the set are the numbers 1, 2, 3 and 4. Sets of elements of , for example \, are subsets of . Sets can themselves be elements. For example, consider the set B = \. The elements of are ''not'' 1, 2, 3, and 4. Rather, there are only three elements of , namely the numbers 1 and 2, and the set \. The elements of a set can be anything. For example, C = \ is the set whose elements are the colors , and . Notation and terminology The relation "is an element of", also called set membership, is denoted by the symbol "∈". Writing :x \in A means that "''x'' is an element of ''A''". Equivalent expressions are "''x'' is a member of ''A''", "''x'' belongs to ''A''", "''x'' is in ''A''" and "''x'' lies in ''A''". The expressions "''A'' includes ''x''" and "''A'' contains ''x''" are also used to mean ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Halmos
Paul Richard Halmos ( hu, Halmos Pál; March 3, 1916 – October 2, 2006) was a Hungarian-born American mathematician and statistician who made fundamental advances in the areas of mathematical logic, probability theory, statistics, operator theory, ergodic theory, and functional analysis (in particular, Hilbert spaces). He was also recognized as a great mathematical expositor. He has been described as one of The Martians. Early life and education Born in Hungary into a Jewish family, Halmos arrived in the U.S. at 13 years of age. He obtained his B.A. from the University of Illinois, majoring in mathematics, but fulfilling the requirements for both a math and philosophy degree. He took only three years to obtain the degree, and was only 19 when he graduated. He then began a Ph.D. in philosophy, still at the Champaign–Urbana campus; but, after failing his masters' oral exams, he shifted to mathematics, graduating in 1938. Joseph L. Doob supervised his dissertation, titled ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kripke–Platek Set Theory
The Kripke–Platek set theory (KP), pronounced , is an axiomatic set theory developed by Saul Kripke and Richard Platek. The theory can be thought of as roughly the predicative part of ZFC and is considerably weaker than it. Axioms In its formulation, a Δ0 formula is one all of whose quantifiers are bounded. This means any quantification is the form \forall u \in v or \exist u \in v. (See the Lévy hierarchy.) * Axiom of extensionality: Two sets are the same if and only if they have the same elements. * Axiom of induction: φ(''a'') being a formula, if for all sets ''x'' the assumption that φ(''y'') holds for all elements ''y'' of ''x'' entails that φ(''x'') holds, then φ(''x'') holds for all sets ''x''. * Axiom of empty set: There exists a set with no members, called the empty set and denoted . * Axiom of pairing: If ''x'', ''y'' are sets, then so is , a set containing ''x'' and ''y'' as its only elements. * Axiom of union: For any set ''x'', there is a set ''y'' such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Class (set Theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid Russell's paradox (see ). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems. In Quine's set-theoretical writing, the phrase "ultimate class" is often used in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the '' cardinality (or the cardinal number)'' of the set. A set that is not a finite set is called an ''infinite set''. For example, the set of all positive integers is infinite: :\. Finite sets are particularly important in combinatorics, the mathematical study of counting. Many arguments involving finite sets rely on the pigeonhole principle, which states that there cannot exist an injective function from a larger finite set to a smaller finite set. Definition and terminology Formally, a set is called finite if there exists a bijection :f\colon S\to\ for some natural number . The number is the set's cardinality, denoted as . The empty set o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordered Pair
In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In contrast, the unordered pair equals the unordered pair .) Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered ''n''-tuples (ordered lists of ''n'' objects). For example, the ordered triple (''a'',''b'',''c'') can be defined as (''a'', (''b'',''c'')), i.e., as one pair nested in another. In the ordered pair (''a'', ''b''), the object ''a'' is called the ''first entry'', and the object ''b'' the '' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards An ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Predicativity
In mathematics, logic and philosophy of mathematics, something that is impredicative is a self-referencing definition. Roughly speaking, a definition is impredicative if it invokes (mentions or quantifies over) the set being defined, or (more commonly) another set that contains the thing being defined. There is no generally accepted precise definition of what it means to be predicative or impredicative. Authors have given different but related definitions. The opposite of impredicativity is predicativity, which essentially entails building stratified (or ramified) theories where quantification over lower levels results in variables of some new type, distinguished from the lower types that the variable ranges over. A prototypical example is intuitionistic type theory, which retains ramification so as to discard impredicativity. Russell's paradox is a famous example of an impredicative construction—namely the set of all sets that do not contain themselves. The paradox is that su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructive Set Theory
Constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "=" and "\in" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be bounded, motivated by results tied to impredicativity. Introduction Constructive outlook Use of intuitionistic logic The logic of the set theories discussed here is constructive in that it rejects , i.e. that the disjunction \phi \lor \neg \phi automatically holds for all propositions. As a rule, to prove the excluded middle for a proposition P, i.e. to prove the particular disjunction P \lor \neg P, either P or \neg P needs to be explicitly prov ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Extensionality
In axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of extensionality, or axiom of extension, is one of the axioms of Zermelo–Fraenkel set theory. It says that sets having the same elements are the same set. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\forall A \, \forall B \, ( \forall X \, (X \in A \iff X \in B) \implies A = B) or in words: :Given any set ''A'' and any set ''B'', if for every set ''X'', ''X'' is a member of ''A'' if and only if ''X'' is a member of ''B'', then ''A'' is equal to ''B''. :(It is not really essential that ''X'' here be a ''set'' — but in ZF, everything is. See Ur-elements below for when this is violated.) The converse, \forall A \, \forall B \, (A = B \implies \forall X \, (X \in A \iff X \in B) ), of this axiom follows from the substitution property of equality. Interpretation To understand this axiom, note that the clause i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset
In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra (structure), Boolean algebra under the subset relation, in which the join and meet are given by Intersection (set theory), intersection and Union (set theory), union, and the subset relation itself is the Inclusion (Boolean algebra), Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |