HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In contrast, the
unordered pair In mathematics, an unordered pair or pair set is a set of the form , i.e. a set having two elements ''a'' and ''b'' with no particular relation between them, where = . In contrast, an ordered pair (''a'', ''b'') has ''a'' as its first ...
equals the unordered pair .) Ordered pairs are also called 2-tuples, or
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
s (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of
terminology Terminology is a group of specialized words and respective meanings in a particular field, and also the study of such terms and their use; the latter meaning is also known as terminology science. A ''term'' is a word, compound word, or multi-wor ...
since an ordered pair need not be an element of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
.) The entries of an ordered pair can be other ordered pairs, enabling the
recursive Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics ...
definition of ordered ''n''-tuples (ordered lists of ''n'' objects). For example, the ordered triple (''a'',''b'',''c'') can be defined as (''a'', (''b'',''c'')), i.e., as one pair nested in another. In the ordered pair (''a'', ''b''), the object ''a'' is called the ''first entry'', and the object ''b'' the ''second entry'' of the pair. Alternatively, the objects are called the first and second ''components'', the first and second ''coordinates'', or the left and right ''projections'' of the ordered pair. Cartesian products and binary relations (and hence functions) are defined in terms of ordered pairs, cf. picture.


Generalities

Let (a_1, b_1) and (a_2, b_2) be ordered pairs. Then the ''characteristic'' (or ''defining'') ''property'' of the ordered pair is: :(a_1, b_1) = (a_2, b_2)\text a_1 = a_2\textb_1 = b_2. The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of all ordered pairs whose first entry is in some set ''A'' and whose second entry is in some set ''B'' is called the Cartesian product of ''A'' and ''B'', and written ''A'' × ''B''. A binary relation between sets ''A'' and ''B'' is a subset of ''A'' × ''B''. The notation may be used for other purposes, most notably as denoting open intervals on the
real number line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a poin ...
. In such situations, the context will usually make it clear which meaning is intended. For additional clarification, the ordered pair may be denoted by the variant notation \langle a,b\rangle, but this notation also has other uses. The left and right projection of a pair ''p'' is usually denoted by 1(''p'') and 2(''p''), or by ''ℓ''(''p'') and ''r''(''p''), respectively. In contexts where arbitrary ''n''-tuples are considered, (''t'') is a common notation for the ''i''-th component of an ''n''-tuple ''t''.


Informal and formal definitions

In some introductory mathematics textbooks an informal (or intuitive) definition of ordered pair is given, such as
For any two objects and , the ordered pair is a notation specifying the two objects and , in that order.
This is usually followed by a comparison to a set of two elements; pointing out that in a set and must be different, but in an ordered pair they may be equal and that while the order of listing the elements of a set doesn't matter, in an ordered pair changing the order of distinct entries changes the ordered pair. This "definition" is unsatisfactory because it is only descriptive and is based on an intuitive understanding of ''order''. However, as is sometimes pointed out, no harm will come from relying on this description and almost everyone thinks of ordered pairs in this manner. A more satisfactory approach is to observe that the characteristic property of ordered pairs given above is all that is required to understand the role of ordered pairs in mathematics. Hence the ordered pair can be taken as a
primitive notion In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an ...
, whose associated axiom is the characteristic property. This was the approach taken by the
N. Bourbaki Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure - PSL (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook in ...
group in its ''Theory of Sets'', published in 1954. However, this approach also has its drawbacks as both the existence of ordered pairs and their characteristic property must be axiomatically assumed. Another way to rigorously deal with ordered pairs is to define them formally in the context of set theory. This can be done in several ways and has the advantage that existence and the characteristic property can be proven from the axioms that define the set theory. One of the most cited versions of this definition is due to Kuratowski (see below) and his definition was used in the second edition of Bourbaki's ''Theory of Sets'', published in 1970. Even those mathematical textbooks that give an informal definition of ordered pairs will often mention the formal definition of Kuratowski in an exercise.


Defining the ordered pair using set theory

If one agrees that
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
is an appealing
foundation of mathematics Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathe ...
, then all mathematical objects must be defined as sets of some sort. Hence if the ordered pair is not taken as primitive, it must be defined as a set. Several set-theoretic definitions of the ordered pair are given below( see also ).


Wiener's definition

Norbert Wiener proposed the first set theoretical definition of the ordered pair in 1914: :\left( a, b \right) := \left\. He observed that this definition made it possible to define the
types Type may refer to: Science and technology Computing * Typing, producing text via a keyboard, typewriter, etc. * Data type In computer science and computer programming, a data type (or simply type) is a set of possible values and a set of allo ...
of ''
Principia Mathematica The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. ...
'' as sets. ''Principia Mathematica'' had taken types, and hence relations of all arities, as primitive. Wiener used instead of to make the definition compatible with
type theory In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a fou ...
where all elements in a class must be of the same "type". With ''b'' nested within an additional set, its type is equal to \'s.


Hausdorff's definition

About the same time as Wiener (1914),
Felix Hausdorff Felix Hausdorff ( , ; November 8, 1868 – January 26, 1942) was a German mathematician who is considered to be one of the founders of modern topology and who contributed significantly to set theory, descriptive set theory, measure theory, an ...
proposed his definition: : (a, b) := \left\ "where 1 and 2 are two distinct objects different from a and b."


Kuratowski's definition

In 1921
Kazimierz Kuratowski Kazimierz Kuratowski (; 2 February 1896 – 18 June 1980) was a Polish mathematician and logician. He was one of the leading representatives of the Warsaw School of Mathematics. Biography and studies Kazimierz Kuratowski was born in Warsaw, (t ...
offered the now-accepted definition of the ordered pair (''a'', ''b''): :(a, \ b)_K \; := \ \. Note that this definition is used even when the first and the second coordinates are identical: : (x,\ x)_K = \ = \ = \ Given some ordered pair ''p'', the property "''x'' is the first coordinate of ''p''" can be formulated as: :\forall Y\in p:x\in Y. The property "''x'' is the second coordinate of ''p''" can be formulated as: :(\exist Y\in p:x\in Y)\land(\forall Y_1,Y_2\in p:Y_1\ne Y_2\rarr (x\notin Y_1\lor x \notin Y_2)). In the case that the left and right coordinates are identical, the right
conjunct {{For, the linguistic and logical operation of conjunction, Logical conjunction In linguistics, the term conjunct has three distinct uses: *A conjunct is an adverbial that adds information to the sentence that is not considered part of the propos ...
(\forall Y_1,Y_2\in p:Y_1\ne Y_2\rarr (x\notin Y_1 \lor x \notin Y_2)) is trivially true, since ''Y''1 ≠ ''Y''2 is never the case. This is how we can extract the first coordinate of a pair (using the iterated-operation notation for arbitrary intersection and arbitrary union): :\pi_1(p) = \bigcup\bigcap p. This is how the second coordinate can be extracted: :\pi_2(p) = \bigcup\left\.


Variants

The above Kuratowski definition of the ordered pair is "adequate" in that it satisfies the characteristic property that an ordered pair must satisfy, namely that (a,b) = (x,y) \leftrightarrow (a=x) \land (b=y). In particular, it adequately expresses 'order', in that (a,b) = (b,a) is false unless b = a. There are other definitions, of similar or lesser complexity, that are equally adequate: * ( a, b )_ := \; * ( a, b )_ := \; * ( a, b )_ := \. The reverse definition is merely a trivial variant of the Kuratowski definition, and as such is of no independent interest. The definition short is so-called because it requires two rather than three pairs of braces. Proving that short satisfies the characteristic property requires the
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
axiom of regularity In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set ''A'' contains an element that is disjoint from ''A''. In first-order logic, the ...
. Moreover, if one uses von Neumann's set-theoretic construction of the natural numbers, then 2 is defined as the set = , which is indistinguishable from the pair (0, 0)short. Yet another disadvantage of the short pair is the fact that, even if ''a'' and ''b'' are of the same type, the elements of the short pair are not. (However, if ''a'' = ''b'' then the short version keeps having cardinality 2, which is something one might expect of any "pair", including any "ordered pair".


Proving that definitions satisfy the characteristic property

Prove: (''a'', ''b'') = (''c'', ''d'')
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is b ...
''a'' = ''c'' and ''b'' = ''d''. Kuratowski:
''If''. If ''a = c'' and ''b = d'', then = . Thus (''a, b'')K = (''c, d'')K. ''Only if''. Two cases: ''a'' = ''b'', and ''a'' ≠ ''b''. If ''a'' = ''b'': :(''a, b'')K = = = . : = (''c, d'')K = (''a, b'')K = . :Thus = = , which implies ''a'' = ''c'' and ''a'' = ''d''. By hypothesis, ''a'' = ''b''. Hence ''b'' = ''d''. If ''a'' ≠ ''b'', then (''a, b'')K = (''c, d'')K implies = . :Suppose = . Then ''c = d = a'', and so = = = . But then would also equal , so that ''b = a'' which contradicts ''a'' ≠ ''b''. :Suppose = . Then ''a = b = c'', which also contradicts ''a'' ≠ ''b''. :Therefore = , so that ''c = a'' and = . :If ''d = a'' were true, then = = ≠ , a contradiction. Thus ''d = b'' is the case, so that ''a = c'' and ''b = d''. Reverse:
(''a, b'')reverse = = = (''b, a'')K. ''If''. If (''a, b'')reverse = (''c, d'')reverse, (''b, a'')K = (''d, c'')K. Therefore, ''b = d'' and ''a = c''. ''Only if''. If ''a = c'' and ''b = d'', then = . Thus (''a, b'')reverse = (''c, d'')reverse. Short: ''If'': If ''a = c'' and ''b = d'', then = . Thus (''a, b'')short = (''c, d'')short. ''Only if'': Suppose = . Then ''a'' is in the left hand side, and thus in the right hand side. Because equal sets have equal elements, one of ''a = c'' or ''a'' = must be the case. :If ''a'' = , then by similar reasoning as above, is in the right hand side, so = ''c'' or = . ::If = ''c'' then ''c'' is in = ''a'' and ''a'' is in ''c'', and this combination contradicts the axiom of regularity, as has no minimal element under the relation "element of." ::If = , then ''a'' is an element of ''a'', from ''a'' = = , again contradicting regularity. :Hence ''a = c'' must hold. Again, we see that = ''c'' or = . :The option = ''c'' and ''a = c'' implies that ''c'' is an element of ''c'', contradicting regularity. :So we have ''a = c'' and = , and so: = \ = \ = , so ''b'' = ''d''.


Quine–Rosser definition

Rosser (1953) employed a definition of the ordered pair due to Quine which requires a prior definition of the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal n ...
s. Let \N be the set of natural numbers and define first :\sigma(x) := \begin x, & \textx \not\in \N, \\ x+1, & \textx \in \N. \end The function \sigma increments its argument if it is a natural number and leaves it as is otherwise; the number 0 does not appear as functional value of \sigma. As x \smallsetminus \N is the set of the elements of x not in \N go on with :\varphi(x) := \sigma = \ = (x \smallsetminus \N) \cup \. This is the set image of a set x under \sigma, sometimes denoted by \sigma''x as well. Applying function \varphi to a set ''x'' simply increments every natural number in it. In particular, \varphi(x) does never contain the number 0, so that for any sets ''x'' and ''y'', :\varphi(x) \neq \ \cup \varphi(y). Further, define :\psi(x) := \sigma \cup \ = \varphi(x) \cup \. By this, \psi(x) does always contain the number 0. Finally, define the ordered pair (''A'', ''B'') as the disjoint union :(A, B) := \varphi \cup \psi = \ \cup \. (which is \varphi''A \cup \psi''B in alternate notation). Extracting all the elements of the pair that do not contain 0 and undoing \varphi yields ''A''. Likewise, ''B'' can be recovered from the elements of the pair that do contain 0. For example, the pair ( \ , \ ) is encoded as \ provided a,b,c,d,e,f\notin \N. In
type theory In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a fou ...
and in outgrowths thereof such as the axiomatic set theory NF, the Quine–Rosser pair has the same type as its projections and hence is termed a "type-level" ordered pair. Hence this definition has the advantage of enabling a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
, defined as a set of ordered pairs, to have a type only 1 higher than the type of its arguments. This definition works only if the set of natural numbers is infinite. This is the case in NF, but not in
type theory In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a fou ...
or in NFU.
J. Barkley Rosser John Barkley Rosser Sr. (December 6, 1907 – September 5, 1989) was an American logician, a student of Alonzo Church, and known for his part in the Church–Rosser theorem, in lambda calculus. He also developed what is now called the "Rosser siev ...
showed that the existence of such a type-level ordered pair (or even a "type-raising by 1" ordered pair) implies the
axiom of infinity In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing th ...
. For an extensive discussion of the ordered pair in the context of Quinian set theories, see Holmes (1998).


Cantor–Frege definition

Early in the development of the set theory, before paradoxes were discovered, Cantor followed Frege by defining the ordered pair of two sets as the class of all relations that hold between these sets, assuming that the notion of relation is primitive: :(x, y) = \. This definition is inadmissible in most modern formalized set theories and is methodologically similar to defining the cardinal of a set as the class of all sets equipotent with the given set.


Morse definition

Morse–Kelley set theory makes free use of proper classes.
Morse Morse may refer to: People * Morse (surname) * Morse Goodman (1917-1993), Anglican Bishop of Calgary, Canada * Morse Robb (1902–1992), Canadian inventor and entrepreneur Geography Antarctica * Cape Morse, Wilkes Land * Mount Morse, Churchi ...
defined the ordered pair so that its projections could be proper classes as well as sets. (The Kuratowski definition does not allow this.) He first defined ordered pairs whose projections are sets in Kuratowski's manner. He then ''redefined'' the pair : (x, y) = (\ \times s(x)) \cup (\ \times s(y)) where the component Cartesian products are Kuratowski pairs of sets and where : s(x) = \ \cup \ This renders possible pairs whose projections are proper classes. The Quine–Rosser definition above also admits proper classes as projections. Similarly the triple is defined as a 3-tuple as follows: : (x, y, z) = (\ \times s(x)) \cup (\ \times s(y)) \cup (\ \times s(z)) The use of the singleton set s(x) which has an inserted empty set allows tuples to have the uniqueness property that if ''a'' is an ''n''-tuple and b is an ''m''-tuple and ''a'' = ''b'' then ''n'' = ''m''. Ordered triples which are defined as ordered pairs do not have this property with respect to ordered pairs.


Axiomatic definition

Ordered pairs can also be introduced in
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
(ZF) axiomatically by just adding to ZF a new function symbol f of arity 2 (it is usually omitted) and a defining axiom for f: :f(a_1, b_1) = f(a_2, b_2)\text a_1 = a_2\textb_1 = b_2. This definition is acceptable because this extension of ZF is a
conservative extension In mathematical logic, a conservative extension is a supertheory of a theory which is often convenient for proving theorems, but proves no new theorems about the language of the original theory. Similarly, a non-conservative extension is a superthe ...
. The definition helps to avoid so called accidental theorems like (a,a) = , ∈ (a,b), if Kuratowski's definition (a,b) = was used.


Category theory

A category-theoretic
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
''A'' × ''B'' in a
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition o ...
represents the set of ordered pairs, with the first element coming from ''A'' and the second coming from ''B''. In this context the characteristic property above is a consequence of the
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fr ...
of the product and the fact that elements of a set ''X'' can be identified with morphisms from 1 (a one element set) to ''X''. While different objects may have the universal property, they are all
naturally isomorphic In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natu ...
.


See also

* Cartesian product *
Tarski–Grothendieck set theory Tarski–Grothendieck set theory (TG, named after mathematicians Alfred Tarski and Alexander Grothendieck) is an axiomatic set theory. It is a non-conservative extension of Zermelo–Fraenkel set theory (ZFC) and is distinguished from other axiom ...
* Trybulec, Andrzej, 1989,
Tarski–Grothendieck Set Theory
, ''Journal of Formalized Mathematics'' (definition Def5 of "ordered pairs" as )


References

{{Set theory Basic concepts in set theory Order theory Type theory