Constructive Set Theory
Constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "=" and "\in" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be bounded, motivated by results tied to impredicativity. Introduction Constructive outlook Use of intuitionistic logic The logic of the set theories discussed here is constructive in that it rejects , i.e. that the disjunction \phi \lor \neg \phi automatically holds for all propositions. As a rule, to prove the excluded middle for a proposition P, i.e. to prove the particular disjunction P \lor \neg P, either P or \neg P needs to be explicitly prov ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructivism (mathematics)
In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the existential quantifier, which is at odds with its classical interpretation. There are many forms of constructivism. These include the program of intuitionism founded by Brouwer, the finitism of Hilbert and Bernays, the constructive recursive mathematics of Shanin and Markov, and Bishop's program of constructive analysis. Constructivism also includes the study of constructive set theories such as CZ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double-negation Translation
In proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic, typically by translating formulas to formulas which are classically equivalent but intuitionistically inequivalent. Particular instances of double-negation translation include Glivenko's translation for propositional logic, and the Gödel–Gentzen translation and Kuroda's translation for first-order logic. Propositional logic The easiest double-negation translation to describe comes from Glivenko's theorem, proved by Valery Glivenko in 1929. It maps each classical formula φ to its double negation ¬¬φ. Glivenko's theorem states: :If φ is a propositional formula, then φ is a classical tautology if and only if ¬¬φ is an intuitionistic tautology. Glivenko's theorem implies the more general statement: :If ''T'' is a set of propositional formulas and φ a propositional formu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proof Theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic that represents Mathematical proof, proofs as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as Recursive data type, inductively-defined data structures such as list (computer science), lists, boxed lists, or Tree (data structure), trees, which are constructed according to the axioms and rule of inference, rules of inference of the logical system. Consequently, proof theory is syntax (logic), syntactic in nature, in contrast to model theory, which is Formal semantics (logic), semantic in nature. Some of the major areas of proof theory include structural proof theory, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Realizability
In mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. Formulas from a formal theory are "realized" by objects, known as "realizers", in a way that knowledge of the realizer gives knowledge about the truth of the formula. There are many variations of realizability; exactly which class of formulas is studied and which objects are realizers differ from one variation to another. Realizability can be seen as a formalization of the BHK interpretation of intuitionistic logic; in realizability the notion of "proof" (which is left undefined in the BHK interpretation) is replaced with a formal notion of "realizer". Most variants of realizability begin with a theorem that any statement that is provable in the formal system being studied is realizable. The realizer, however, usually gives more information about the formula than a formal proof would directly provide. Beyond giving insight in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heyting Arithmetic
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism.Troelstra 1973:18 It is named after Arend Heyting, who first proposed it. Axiomatization As with first-order Peano arithmetic , the intended model of this theory are the natural numbers and the theories characterize addition and multiplication. Heyting arithmetic adopts the axioms of Peano arithmetic, including the signature with zero "0" and the successor "S", but uses intuitionistic logic for inference. In particular, the principle of the excluded middle does not hold in general. Metalogic and theorems As with other theories over intuitionistic logic, various instances of can be proven. For instance, proves equality "=" is decidable for all numbers, :\vdash \forall n. \forall m. \big((n = m)\lor\neg(n = m)\big) In fact, since equality is the only predicate symbol in Heyting arithmetic, it then follows that, for any quantifier-free formula \phi, w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Disjunction And Existence Properties
In mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005). Disjunction property The disjunction property is satisfied by a theory if, whenever a sentence ''A'' ∨ ''B'' is a theorem, then either ''A'' is a theorem, or ''B'' is a theorem. Existence property The existence property or witness property is satisfied by a theory if, whenever a sentence is a theorem, where ''A''(''x'') has no other free variables, then there is some term ''t'' such that the theory proves . Related properties Rathjen (2005) lists five properties that a theory may possess. These include the disjunction property (DP), the existence property (EP), and three additional properties: * The numerical existence property (NEP) states that if the theory proves (\exists x \in \mathbb)\varphi(x), where ''φ'' has no other free variables, then the theory proves \varphi(\ba ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordinal Analysis
In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory. History The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinal of Peano arithmetic is ε0. See Gentzen's consistency proof. Definition Ordinal analysis concerns true, effective (recursive) theories that can interpret a sufficient portion of arithmetic to make statements about ordinal notations. The proof-theoretic ordinal of such a theory T is the supremum of the order types of all ordinal notations (necessarily recursive, see next section) that the theory can prove are well founded—the supremum of all ordinals \alpha for which the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Trichotomy
In mathematics, the law of trichotomy states that every real number is either positive, negative, or zero.Trichotomy Law at More generally, a binary relation ''R'' on a ''X'' is trichotomous if for all ''x'' and ''y'' in ''X'', exactly one of ''xRy'', ''yRx'' and ''x''=''y'' holds. Writing ''R'' as <, this is stated in formal logic as: : |
|
Ordinal Numbers
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Regularity
In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set ''A'' contains an element that is disjoint from ''A''. In first-order logic, the axiom reads: : \forall x\,(x \neq \varnothing \rightarrow \exists y(y \in x\ \land y \cap x = \varnothing)). The axiom of regularity together with the axiom of pairing implies that no set is an element of itself, and that there is no infinite sequence (''an'') such that ''ai+1'' is an element of ''ai'' for all ''i''. With the axiom of dependent choice (which is a weakened form of the axiom of choice), this result can be reversed: if there are no such infinite sequences, then the axiom of regularity is true. Hence, in this context the axiom of regularity is equivalent to the sentence that there are no downward infinite membership chains. The axiom was introduced by ; it was adopted in a formulation closer to the one found in contemporary textb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diaconescu's Theorem
In mathematical logic, Diaconescu's theorem, or the Goodman–Myhill theorem, states that the full axiom of choice is sufficient to derive the law of the excluded middle, or restricted forms of it, in constructive set theory. It was discovered in 1975 by Radu Diaconescu and later by Goodman and Myhill. Already in 1967, Errett Bishop posed the theorem as an exercise (Problem 2 on page 58 in ''Foundations of constructive analysis''E. Bishop, ''Foundations of constructive analysis'', McGraw-Hill (1967)). Proof For any proposition P\,, we can build the sets : U = \ and : V = \. These are sets, using the axiom of specification. In classical set theory this would be equivalent to : U = \begin \, & \mbox P \\ \, & \mbox \neg P\end and similarly for V\,. However, without the law of the excluded middle, these equivalences cannot be proven; in fact the two sets are not even provably finite (in the usual sense of being in bijection with a natural number, though they would be in the De ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets, there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. In many cases, a set arising from choosing elements arbitrarily can be made without invoking the axiom of choice; this is, in particular, the case if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available – some distinguishin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |