Arithmetic Combinatorics
In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis. Scope Arithmetic combinatorics is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). Additive combinatorics is the special case when only the operations of addition and subtraction are involved. Ben Green explains arithmetic combinatorics in his review of "Additive Combinatorics" by Tao and Vu. Important results Szemerédi's theorem Szemerédi's theorem is a result in arithmetic combinatorics concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured. that every set of integers ''A'' with positive natural density contains a ''k'' term arithmetic progression for every ''k''. This conjecture, which became Szemerédi's theorem, generalizes the statement of van der Waerden's theorem. Green–Tao theorem and extensions The Gre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Green–Tao Theorem
In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number ''k'', there exist arithmetic progressions of primes with ''k'' terms. The proof is an extension of Szemerédi's theorem. The problem can be traced back to investigations of Lagrange and Waring from around 1770.. Statement Let \pi(N) denote the number of primes less than or equal to N. If A is a subset of the prime numbers such that : \limsup_ \frac>0, then for all positive integers k, the set A contains infinitely many arithmetic progressions of length k. In particular, the entire set of prime numbers contains arbitrarily long arithmetic progressions. In their later work on the generalized Hardy–Littlewood conjecture, Green and Tao stated and conditionally proved the asymptotic formula : (\mathfrak_k + o(1))\frac for the number of ''k'' tuples of primes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product Set
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards An ill ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Difference Set
In combinatorics, a (v,k,\lambda) difference set is a subset D of size k of a group G of order v such that every nonidentity element of G can be expressed as a product d_1d_2^ of elements of D in exactly \lambda ways. A difference set D is said to be ''cyclic'', ''abelian'', ''non-abelian'', etc., if the group G has the corresponding property. A difference set with \lambda = 1 is sometimes called ''planar'' or ''simple''. If G is an abelian group written in additive notation, the defining condition is that every nonzero element of G can be written as a ''difference'' of elements of D in exactly \lambda ways. The term "difference set" arises in this way. Basic facts * A simple counting argument shows that there are exactly k^2-k pairs of elements from D that will yield nonidentity elements, so every difference set must satisfy the equation k^2-k=(v-1)\lambda. * If D is a difference set, and g\in G, then gD=\ is also a difference set, and is called a translate of D (D + g in additi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sumset
In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets A and B of an abelian group G (written additively) is defined to be the set of all sums of an element from A with an element from B. That is, :A + B = \. The n-fold iterated sumset of A is :nA = A + \cdots + A, where there are n summands. Many of the questions and results of additive combinatorics and additive number theory can be phrased in terms of sumsets. For example, Lagrange's four-square theorem can be written succinctly in the form :4\Box = \mathbb, where \Box is the set of square numbers. A subject that has received a fair amount of study is that of sets with ''small doubling'', where the size of the set A+A is small (compared to the size of A); see for example Freiman's theorem. See also *Restricted sumset * Sidon set *Sum-free set *Schnirelmann density *Shapley–Folkman lemma *X + Y sorting References * * * *Terence Tao and Van Vu, ''Additive Combinatorics'', Cambridge Universit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gromov's Theorem On Groups Of Polynomial Growth
In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov (mathematician), Mikhail Gromov, characterizes finitely generated Group (mathematics), groups of ''polynomial'' growth, as those groups which have nilpotent group, nilpotent subgroups of finite index of a subgroup, index. Statement The Growth rate (group theory), growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length (relative to a symmetric generating set) at most ''n'' is bounded above by a polynomial function ''p''(''n''). The ''order of growth'' is then the least degree of any such polynomial function ''p''. A nilpotent group ''G'' is a group with a lower central series terminating in the identity subgroup. Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index. Gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Freiman's Theorem
In additive combinatorics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if , A+A, /, A, is small, then A can be contained in a small generalized arithmetic progression. Statement If A is a finite subset of \mathbb with , A+A, \le K, A, , then A is contained in a generalized arithmetic progression of dimension at most d(K) and size at most f(K), A, , where d(K) and f(K) are constants depending only on K. Examples For a finite set A of integers, it is always true that :, A + A, \ge 2, A, -1, with equality precisely when A is an arithmetic progression. More generally, suppose A is a subset of a finite proper generalized arithmetic progression P of dimension d such that , P, \le C, A, for some real C \ge 1. Then , P+P, \le 2^d , P, , so that :, A+A, \le , P+P, \le 2^d , P, \le C2^d, A, . History of Freiman's theorem This result is due to Gregory Freiman (1964, 1966). Much interest in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Publications Mathématiques De L'IHÉS
''Publications Mathématiques de l'IHÉS'' is a peer-reviewed mathematical journal. It is published by Springer Science+Business Media on behalf of the Institut des Hautes Études Scientifiques, with the help of the Centre National de la Recherche Scientifique. The journal was established in 1959 and was published at irregular intervals, from one to five volumes a year. It is now biannual. The editor-in-chief is Claire Voisin (Collège de France). See also *''Annals of Mathematics'' *'' Journal of the American Mathematical Society'' *''Inventiones Mathematicae ''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors ...'' External links * Back issues from 1959 to 2010 Mathematics journals Publications established in 1959 Springer Science+Business Media academic journals Biannual journal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Emmanuel Breuillard
Emmanuel Breuillard (born 25 June 1977) is a French mathematician. He was the Sadleirian Professor of Pure Mathematics in the Department of Pure Mathematics and Mathematical Statistics (DPMMS) at the University of Cambridge, and is now Professor of Pure Mathematics at the Mathematical Institute, University of Oxford as of January 1, 2022. He had previously been professor at Paris-Sud 11 University. In 2012, he won an EMS Prize for his contributions to combinatorics and other fields. His area of research has been in group theoretic aspects of geometry, number theory and combinatorics. In 2014 he was an invited speaker at the International Congress of Mathematicians in Seoul Seoul (; ; ), officially known as the Seoul Special City, is the capital and largest metropolis of South Korea.Before 1972, Seoul was the ''de jure'' capital of the Democratic People's Republic of Korea (North Korea) as stated iArticle 103 .... References External linksWebsite at the University of C ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer-valued Polynomial
In mathematics, an integer-valued polynomial (also known as a numerical polynomial) P(t) is a polynomial whose value P(n) is an integer for every integer ''n''. Every polynomial with integer coefficients is integer-valued, but the converse is not true. For example, the polynomial : \frac t^2 + \frac t=\fract(t+1) takes on integer values whenever ''t'' is an integer. That is because one of ''t'' and t + 1 must be an even number. (The values this polynomial takes are the triangular numbers.) Integer-valued polynomials are objects of study in their own right in algebra, and frequently appear in algebraic topology.. See in particular pp. 213–214. Classification The class of integer-valued polynomials was described fully by . Inside the polynomial ring \Q /math> of polynomials with rational number coefficients, the subring of integer-valued polynomials is a free abelian group. It has as basis the polynomials :P_k(t) = t(t-1)\cdots (t-k+1)/k! for k = 0,1,2, \dots, i.e., th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acta Mathematica
''Acta Mathematica'' is a peer-reviewed open-access scientific journal covering research in all fields of mathematics. According to Cédric Villani, this journal is "considered by many to be the most prestigious of all mathematical research journals".. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 4.273, ranking it 5th out of 330 journals in the category "Mathematics". Publication history The journal was established by Gösta Mittag-Leffler in 1882 and is published by Institut Mittag-Leffler, a research institute for mathematics belonging to the Royal Swedish Academy of Sciences. The journal was printed and distributed by Springer from 2006 to 2016. Since 2017, Acta Mathematica has been published electronically and in print by International Press. Its electronic version is open access without publishing fees. Poincaré episode The journal's "most famous episode" (according to Villani) concerns Henri Poincaré, who won a prize offered ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |