Sumset
In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets A and B of an abelian group G (written additively) is defined to be the set of all sums of an element from A with an element from B. That is, :A + B = \. The n-fold iterated sumset of A is :nA = A + \cdots + A, where there are n summands. Many of the questions and results of additive combinatorics and additive number theory can be phrased in terms of sumsets. For example, Lagrange's four-square theorem can be written succinctly in the form :4\,\Box = \mathbb, where \Box is the set of square numbers. A subject that has received a fair amount of study is that of sets with ''small doubling'', where the size of the set A+A is small (compared to the size of A); see for example Freiman's theorem. See also *Restricted sumset * Sidon set *Sum-free set * Schnirelmann density *Shapley–Folkman lemma *X + Y sorting X, or x, is the twenty-fourth Letter (alphabet), letter of the Latin alphab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Schnirelmann Density
In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician Lev Schnirelmann, who was the first to study it.Schnirelmann, L.G. (1930).On the additive properties of numbers, first published in "Proceedings of the Don Polytechnic Institute in Novocherkassk" (in Russian), vol XIV (1930), pp. 3-27, and reprinted in "Uspekhi Matematicheskikh Nauk" (in Russian), 1939, no. 6, 9–25.Schnirelmann, L.G. (1933). First published asÜber additive Eigenschaften von Zahlen in "Mathematische Annalen" (in German), vol 107 (1933), 649-690, and reprinted asOn the additive properties of numbers in "Uspekhin. Matematicheskikh Nauk" (in Russian), 1940, no. 7, 7–46. Definition The Schnirelmann density of a set of natural numbers ''A'' is defined as :\sigma A = \inf_ \frac, where ''A''(''n'') denotes the number of elements of ''A'' not exceeding ''n'' and inf is infimum.Nathanson (1996) pp.191–19 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Additive Combinatorics
Additive combinatorics is an area of combinatorics in mathematics. One major area of study in additive combinatorics are ''inverse problems'': given the size of the sumset is small, what can we say about the structures of and ? In the case of the integers, the classical Freiman's theorem provides a partial answer to this question in terms of multi-dimensional arithmetic progressions. Another typical problem is to find a lower bound for in terms of and . This can be viewed as an inverse problem with the given information that is sufficiently small and the structural conclusion is then of the form that either or is the empty set; however, in literature, such problems are sometimes considered to be direct problems as well. Examples of this type include the Erdős–Heilbronn Conjecture (for a restricted sumset) and the Cauchy–Davenport Theorem. The methods used for tackling such questions often come from many different fields of mathematics, including combinatorics, ergod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Freiman's Theorem
In additive combinatorics, a discipline within mathematics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if , A+A, /, A, is small, then A can be contained in a small generalized arithmetic progression. Statement If A is a finite subset of \mathbb with , A+A, \le K, A, , then A is contained in a generalized arithmetic progression of dimension at most d(K) and size at most f(K), A, , where d(K) and f(K) are constants depending only on K. Examples For a finite set A of integers, it is always true that :, A + A, \ge 2, A, -1, with equality precisely when A is an arithmetic progression. More generally, suppose A is a subset of a finite proper generalized arithmetic progression P of dimension d such that , P, \le C, A, for some real C \ge 1. Then , P+P, \le 2^d , P, , so that :, A+A, \le , P+P, \le 2^d , P, \le C2^d, A, . History of Freiman's theorem This result is due to Gregory Freim ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
X + Y Sorting
X, or x, is the twenty-fourth Letter (alphabet), letter of the Latin alphabet, used in the English alphabet, modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is Wikt:ex#English, ''ex'' (pronounced ), plural ''exes''."X", ''Oxford English Dictionary'', 2nd edition (1989); ''Merriam-Webster's Third New International Dictionary of the English Language, Unabridged'' (1993); "ex", ''op. cit''. History The letter , representing , was inherited from the Etruscan alphabet. It perhaps originated in the of the Archaic Greek alphabets#Euboean, Euboean alphabet or another Western Greek alphabet, which also represented . Its relationship with the of the Eastern Greek alphabets, which represented , is uncertain. The pronunciation of in the Romance languages underwent Palatalization in the Romance languages, sound changes, with various outcomes: * French language, French: (e.g. ''laisser'' from ''laxare'') * Itali ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Restricted Sumset
In additive number theory and combinatorics, a restricted sumset has the form :S=\, where A_1,\ldots,A_n are finite nonempty subsets of a field ''F'' and P(x_1,\ldots,x_n) is a polynomial over ''F''. If P is a constant non-zero function, for example P(x_1,\ldots,x_n)=1 for any x_1,\ldots,x_n, then S is the usual sumset A_1+\cdots+A_n which is denoted by nA if A_1=\cdots=A_n=A. When :P(x_1,\ldots,x_n) = \prod_ (x_j-x_i), ''S'' is written as A_1\dotplus\cdots\dotplus A_n which is denoted by n^ A if A_1=\cdots=A_n=A. Note that , ''S'', > 0 if and only if there exist a_1\in A_1,\ldots,a_n\in A_n with P(a_1,\ldots,a_n)\not=0. Cauchy–Davenport theorem The Cauchy–Davenport theorem, named after Augustin Louis Cauchy and Harold Davenport, asserts that for any prime ''p'' and nonempty subsets ''A'' and ''B'' of the prime order cyclic group \mathbb/p\mathbb we have the inequalityGeroldinger & Ruzsa (2009) pp.141–142 :, A+B, \ge \min\ where A+B := \, i.e. we're using mod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Additive Number Theory
Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Principal objects of study include the sumset of two subsets and of elements from an abelian group , :A + B = \, and the -fold sumset of , :hA = \underset\,. Additive number theory The field is principally devoted to consideration of ''direct problems'' over (typically) the integers, that is, determining the structure of from the structure of : for example, determining which elements can be represented as a sum from , where ' is a fixed subset.Nathanson (1996) II:1 Two classical problems of this type are the Goldbach conjecture (which is the conjecture that contains all even numbers greater than two, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minkowski Addition
In geometry, the Minkowski sum of two set (mathematics), sets of position vectors ''A'' and ''B'' in Euclidean space is formed by vector addition, adding each vector in ''A'' to each vector in ''B'': A + B = \ The Minkowski difference (also ''Minkowski subtraction'', ''Minkowski decomposition'', or ''geometric difference'') is the corresponding inverse, where (A - B) produces a set that could be summed with ''B'' to recover ''A''. This is defined as the Complement (set theory), complement of the Minkowski sum of the complement of ''A'' with the reflection of ''B'' about the origin. \begin -B &= \\\ A - B &= (A^\complement + (-B))^\complement \end This definition allows a symmetrical relationship between the Minkowski sum and difference. Note that alternately taking the sum and difference with ''B'' is not necessarily equivalent. The sum can fill gaps which the difference may not re-open, and the difference can erase small islands which the sum cannot recreate from nothing. \be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sum-free Set
In additive combinatorics and number theory, a subset ''A'' of an abelian group ''G'' is said to be sum-free if the sumset ''A'' + ''A'' is disjoint from ''A''. In other words, ''A'' is sum-free if the equation a + b = c has no solution with a,b,c \in A. For example, the set of odd numbers is a sum-free subset of the integers, and the set forms a large sum-free subset of the set . Fermat's Last Theorem is the statement that, for a given integer ''n'' > 2, the set of all nonzero ''n''th powers of the integers is a sum-free set. Some basic questions that have been asked about sum-free sets are: * How many sum-free subsets of are there, for an integer ''N''? Ben Green has shown that the answer is O(2^), as predicted by the Cameron–Erdős conjecture. * How many sum-free sets does an abelian group ''G'' contain?Ben Green and Imre RuzsaSum-free sets in abelian groups 2005. * What is the size of the largest sum-free set that an abelian group ''G'' contains? A sum-free set is sa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shapley–Folkman Lemma
The Shapley–Folkman lemma is a result in convex geometry that describes the Minkowski addition of set (mathematics), sets in a vector space. The lemma may be intuitively understood as saying that, if the number of summed sets exceeds the dimension (linear algebra), dimension of the vector space, then their Minkowski sum is approximately convex. It is named after mathematicians Lloyd Shapley and Jon Folkman, but was first published by the economist Ross Starr, Ross M. Starr. Related results provide more refined statements about how close the approximation is. For example, the Shapley–Folkman theorem provides an upper bound on the Euclidean distance, distance between any point in the Minkowski sum and its convex hull. This upper bound is sharpened by the Shapley–Folkman–Starr theorem (alternatively, Starr's corollary). The Shapley–Folkman lemma has applications in economics, mathematical optimization, optimization and probability theory. In economics, it can be use ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lagrange's Four-square Theorem
Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number, nonnegative integer can be represented as a sum of four non-negative integer square number, squares. That is, the squares form an additive basis of order four: p = a^2 + b^2 + c^2 + d^2, where the four numbers a, b, c, d are integers. For illustration, 3, 31, and 310 can be represented as the sum of four squares as follows: \begin 3 & = 1^2+1^2+1^2+0^2 \\[3pt] 31 & = 5^2+2^2+1^2+1^2 \\[3pt] 310 & = 17^2+4^2+2^2+1^2 \\[3pt] & = 16^2 + 7^2 + 2^2 +1^2 \\[3pt] & = 15^2 + 9^2 + 2^2 +0^2 \\[3pt] & = 12^2 + 11^2 + 6^2 + 3^2. \end This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem. Historical development From examples given in the ''Arithmetica,'' it is clear that Diophantus was aware of the theorem. This book was translated in 1621 into Latin by Claude Gaspard Bachet de Méziriac, Bachet (Claude Gaspard Bachet de Mézi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Number
In mathematics, a square number or perfect square is an integer that is the square (algebra), square of an integer; in other words, it is the multiplication, product of some integer with itself. For example, 9 is a square number, since it equals and can be written as . The usual notation for the square of a number is not the product , but the equivalent exponentiation , usually pronounced as " squared". The name ''square'' number comes from the name of the shape. The unit of area is defined as the area of a unit square (). Hence, a square with side length has area . If a square number is represented by ''n'' points, the points can be arranged in rows as a square each side of which has the same number of points as the square root of ''n''; thus, square numbers are a type of Figurate number, figurate numbers (other examples being Cube (algebra), cube numbers and triangular numbers). In the Real number, real number system, square numbers are non-negative. A non-negative integer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sidon Set
In number theory, a Sidon sequence is a sequence A=\ of natural numbers in which all pairwise sums a_i+a_j are different. Sidon sequences are also called Sidon sets; they are named after the Hungarian mathematician Simon Sidon, who introduced the concept in his investigations of Fourier series. The main problem in the study of Sidon sequences, posed by Sidon, is to find the maximum number of elements that a Sidon sequence can contain, up to some bound x. Despite a large body of research, the question has remained unsolved. Early results Paul Erdős and Pál Turán proved that, for every x>0, the number of elements smaller than x in a Sidon sequence is at most \sqrt+O(\sqrt . Several years earlier, James Singer had constructed Sidon sequences with \sqrt(1-o(1)) terms less than ''x''. The upper bound was improved to \sqrt+\sqrt 1 in 1969 and to \sqrt+0.998\sqrt /math> in 2023. In 1994 Erdős offered 500 dollars for a proof or disproof of the bound \sqrt+o(x^\varepsilon). Dense ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |