Almgren–Pitts Min-max Theory
   HOME
*





Almgren–Pitts Min-max Theory
In mathematics, the Almgren–Pitts min-max theory (named after Frederick J. Almgren, Jr. and his student Jon T. Pitts) is an analogue of Morse theory for hypersurfaces. The theory started with the efforts for generalizing George David Birkhoff's method for the construction of simple closed geodesics on the sphere, to allow the construction of embedded minimal surfaces in arbitrary 3-manifolds. It has played roles in the solutions to a number of conjectures in geometry and topology found by Almgren and Pitts themselves and also by other mathematicians, such as Mikhail Gromov, Richard Schoen, Shing-Tung Yau, Fernando Codá Marques, André Neves, Ian Agol, among others. Description and basic concepts The theory allows the construction of embedded minimal hypersurfaces though variational methods. In his PhD thesis Almgren proved that the m-th homotopy group of the space of flat k-dimensional cycles on a closed Riemannian manifold is isomorphic to the (m+k)-th dimensional homolo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shing-Tung Yau
Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University. Yau was born in Shantou, China, moved to Hong Kong at a young age, and to the United States in 1969. He was awarded the Fields Medal in 1982, in recognition of his contributions to partial differential equations, the Calabi conjecture, the positive energy theorem, and the Monge–Ampère equation. Yau is considered one of the major contributors to the development of modern differential geometry and geometric analysis. The impact of Yau's work can be seen in the mathematical and physical fields of differential geometry, partial differential equations, convex geometry, algebraic geometry, enumerative geometry, mirror symmetry, general relativity, and string theory, while his work has also touched upon applied ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leon Simon
Leon Melvyn Simon , born in 1945, is a Leroy P. Steele PrizeSee announcemen retrieved 15 September 2017. and Bôcher Memorial Prize, Bôcher Prize-winningSee . mathematician, known for deep contributions to the fields of geometric analysis, geometric measure theory, and partial differential equations. He is currently Professor Emeritus in the Mathematics Department at Stanford University. Biography Academic career Leon Simon, born 6 July 1945, received his BSc from the University of Adelaide in 1967, and his PhD in 1971 from the same institution, under the direction of James H. Michael. His doctoral thesis was titled ''Interior Gradient Bounds for Non-Uniformly Elliptic Equations''. He was employed from 1968 to 1971 as a Tutor in Mathematics by the university. Simon has since held a variety of academic positions. He worked first at Flinders University as a lecturer, then at Australian National University as a professor, at the University of Melbourne, the University of Mi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Varifold
In mathematics, a varifold is, loosely speaking, a measure-theoretic generalization of the concept of a differentiable manifold, by replacing differentiability requirements with those provided by rectifiable sets, while maintaining the general algebraic structure usually seen in differential geometry. Varifolds generalize the idea of a rectifiable current, and are studied in geometric measure theory. Historical note Varifolds were first introduced by Laurence Chisholm Young in , under the name "''generalized surfaces''". Frederick J. Almgren Jr. slightly modified the definition in his mimeographed notes and coined the name ''varifold'': he wanted to emphasize that these objects are substitutes for ordinary manifolds in problems of the calculus of variations. The modern approach to the theory was based on Almgren's notesThe first widely circulated exposition of Almgren's ideas is the book : however, the first systematic exposition of the theory is contained in the mimeograph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dold–Thom Theorem
In algebraic topology, the Dold-Thom theorem states that the homotopy groups of the infinite symmetric product of a connected CW complex are the same as its reduced homology groups. The most common version of its proof consists of showing that the composition of the homotopy group functors with the infinite symmetric product defines a reduced homology theory. One of the main tools used in doing so are quasifibrations. The theorem has been generalised in various ways, for example by the Almgren isomorphism theorem. There are several other theorems constituting relations between homotopy and homology, for example the Hurewicz theorem. Another approach is given by stable homotopy theory. Thanks to the Freudenthal suspension theorem, one can see that the latter actually defines a homology theory. Nevertheless, none of these allow one to directly reduce homology to homotopy. This advantage of the Dold-Thom theorem makes it particularly interesting for algebraic geometry. The theorem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homology (mathematics)
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ''g''''p'' on the tangent space ''T''''p''''M'' at each point ''p''. The family ''g''''p'' of inner products is called a metric tensor, Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take ''g'' to be Smoothness, smooth, which means that for any smooth coordinate chart on ''M'', the ''n''2 functions :g\left(\frac,\frac\right):U\to\mathbb are smooth functions. These functions are commonly designated as g_. With further restrictions on the g_, one could also consider Lipschitz continuity, Lipschitz Riemannian metrics or Measurable function, measurable Riemannian metrics, among many other possibilities. A Riemannian metric (tensor) makes it possible to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or ''holes'', of a topological space. To define the ''n''-th homotopy group, the base-point-preserving maps from an ''n''-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the ''n''-th homotopy group, \pi_n(X), of the given space ''X'' with base point. Topological spaces with differing homotopy groups are never equivalent ( homeomorphic), but topological spaces that homeomorphic have the same homotopy groups. The notion of homotopy of paths was introduced by Camille Jordan. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structure-preserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Osserman
Robert "Bob" Osserman (December 19, 1926 – November 30, 2011) was an American mathematician who worked in geometry. He is specially remembered for his work on the theory of minimal surfaces. Raised in Bronx, he went to Bronx High School of Science (diploma, 1942) and New York University. He earned a Ph.D. in 1955 from Harvard University with the thesis ''Contributions to the Problem of Type'' (on Riemann surfaces) supervised by Lars Ahlfors. He joined Stanford University in 1955. He joined the Mathematical Sciences Research Institute in 1990. He worked on geometric function theory, differential geometry, the two integrated in a theory of minimal surfaces, isoperimetric inequality, and other issues in the areas of astronomy, geometry, cartography and complex function theory. Osserman was the head of mathematics at Office of Naval Research, a Fulbright Lecturer at the University of Paris and Guggenheim Fellow at the University of Warwick. He edited numerous books and promo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]