HOME
*





Algebraic Statistics
Algebraic statistics is the use of algebra to advance statistics. Algebra has been useful for experimental design, parameter estimation, and hypothesis testing. Traditionally, algebraic statistics has been associated with the design of experiments and multivariate analysis (especially time series). In recent years, the term "algebraic statistics" has been sometimes restricted, sometimes being used to label the use of algebraic geometry and commutative algebra in statistics. The tradition of algebraic statistics In the past, statisticians have used algebra to advance research in statistics. Some algebraic statistics led to the development of new topics in algebra and combinatorics, such as association schemes. Design of experiments For example, Ronald A. Fisher, Henry B. Mann, and Rosemary A. Bailey applied Abelian groups to the design of experiments. Experimental designs were also studied with affine geometry over finite fields and then with the introduction of association sche ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Haar Measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This measure was introduced by Alfréd Haar in 1933, though its special case for Lie groups had been introduced by Adolf Hurwitz in 1897 under the name "invariant integral". Haar measures are used in many parts of analysis, number theory, group theory, representation theory, statistics, probability theory, and ergodic theory. Preliminaries Let (G, \cdot) be a locally compact Hausdorff topological group. The \sigma-algebra generated by all open subsets of G is called the Borel algebra. An element of the Borel algebra is called a Borel set. If g is an element of G and S is a subset of G, then we define the left and right translates of S by ''g'' as follows: * Left translate: g S = \. * Right translate: S g = \. Left and right translates map Borel sets onto Borel sets. A measure \mu on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Theory
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras. These ''lattice-like'' structures all admit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image Analysis
Image analysis or imagery analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face. Computers are indispensable for the analysis of large amounts of data, for tasks that require complex computation, or for the extraction of quantitative information. On the other hand, the human visual cortex is an excellent image analysis apparatus, especially for extracting higher-level information, and for many applications — including medicine, security, and remote sensing — human analysts still cannot be replaced by computers. For this reason, many important image analysis tools such as edge detectors and neural networks are inspired by human visual perception models. Digital Digital Image Analysis or Computer Image Analysis is when a computer or electrical device au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spatial Statistics
Spatial analysis or spatial statistics includes any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques, many still in their early development, using different analytic approaches and applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is the technique applied to structures at the human scale, most notably in the analysis of geographic data or transcriptomics data. Complex issues arise in spatial analysis, many of which are neither clearly defined nor completely resolved, but form the basis for current research. The most fundamental of these is the problem of defining the spatial location of the entities being studied. Classification of the techniques of spatial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ulf Grenander
Ulf Grenander (23 July 1923 – 12 May 2016) was a Swedish statistician and professor of applied mathematics at Brown University. His early research was in probability theory, stochastic processes, time series analysis, and statistical theory (particularly the order-constrained estimation of cumulative distribution functions using his sieve estimator). In recent decades, Grenander contributed to computational statistics, image processing, pattern recognition, and artificial intelligence. He coined the term pattern theory to distinguish from pattern recognition. Honors In 1966 Grenander was elected to the Royal Academy of Sciences of Sweden, and in 1996 to the US National Academy of Sciences. In 1998 he was an Invited Speaker of the International Congress of Mathematicians in Berlin. He received an honorary doctorate in 1994 from the University of Chicago, and in 2005 from the Royal Institute of Technology of Stockholm, Sweden. Schooling Grenander earned his undergraduate degree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stationary Stochastic Process
In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Consequently, parameters such as mean and variance also do not change over time. If you draw a line through the middle of a stationary process then it should be flat; it may have 'seasonal' cycles, but overall it does not trend up nor down. Since stationarity is an assumption underlying many statistical procedures used in time series analysis, non-stationary data are often transformed to become stationary. The most common cause of violation of stationarity is a trend in the mean, which can be due either to the presence of a unit root or of a deterministic trend. In the former case of a unit root, stochastic shocks have permanent effects, and the process is not mean-reverting. In the latter case of a deterministic trend, the process is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wold Decomposition
In mathematics, particularly in operator theory, Wold decomposition or Wold–von Neumann decomposition, named after Herman Wold and John von Neumann, is a classification theorem for isometric linear operators on a given Hilbert space. It states that every isometry is a direct sum of copies of the unilateral shift and a unitary operator. In time series analysis, the theorem implies that any stationary discrete-time stochastic process can be decomposed into a pair of uncorrelated processes, one deterministic, and the other being a moving average process. Details Let ''H'' be a Hilbert space, ''L''(''H'') be the bounded operators on ''H'', and ''V'' ∈ ''L''(''H'') be an isometry. The Wold decomposition states that every isometry ''V'' takes the form :V = (\oplus_ S) \oplus U for some index set ''A'', where ''S'' is the unilateral shift on a Hilbert space ''Hα'', and ''U'' is a unitary operator (possible vacuous). The family consists of isomorphic Hilbert spaces. A proof ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wold's Theorem
In statistics, Wold's decomposition or the Wold representation theorem (not to be confused with the Wold theorem that is the discrete-time analog of the Wiener–Khinchin theorem), named after Herman Wold, says that every covariance-stationary time series Y_ can be written as the sum of two time series, one ''deterministic'' and one ''stochastic''. Formally :Y_t=\sum_^\infty b_j \varepsilon_+\eta_t, where: :*Y_t is the time series being considered, :*\varepsilon_t is an uncorrelated sequence which is the innovation process to the process Y_t – that is, a white noise process that is input to the linear filter \ . :*b is the ''possibly'' infinite vector of moving average weights (coefficients or parameters) :*\eta_t is a deterministic time series, such as one represented by a sine wave. The moving average coefficients have these properties: # Stable, that is square summable \sum_^, b_, ^2 < \infty # Causal (i.e. there are no terms with ''j'' < 0) # Mini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Analysis
Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fourier series and Fourier transforms (i.e. an extended form of Fourier analysis). In the past two centuries, it has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis and neuroscience. The term "harmonics" originated as the Ancient Greek word ''harmonikos'', meaning "skilled in music". In physical eigenvalue problems, it began to mean waves whose frequencies are Multiple (mathematics), integer multiples of one another, as are the frequencies of the Harmonic series (music), harmonics of music notes, but the term has been generalized beyond its original meaning. The classical Fourier transform on R''n'' is still an area of ongoing research, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant Subspace
In mathematics, an invariant subspace of a linear mapping ''T'' : ''V'' → ''V '' i.e. from some vector space ''V'' to itself, is a subspace ''W'' of ''V'' that is preserved by ''T''; that is, ''T''(''W'') ⊆ ''W''. General description Consider a linear mapping T :T: W \to W. An invariant subspace W of T has the property that all vectors \mathbf \in W are transformed by T into vectors also contained in W. This can be stated as :\mathbf \in W \implies T(\mathbf) \in W. Trivial examples of invariant subspaces * \mathbb^n: Since T maps every vector in \mathbb^n into \mathbb^n. * \: Since a linear map has to map 0 \mapsto 0. 1-dimensional invariant subspace ''U'' A basis of a 1-dimensional space is simply a non-zero vector \mathbf. Consequently, any vector \mathbf \in U can be represented as \lambda \mathbf where \lambda is a scalar. If we represent T by a matrix A then, for U to be an invariant subspace it must satisfy : \forall \mathbf \in U \; \exists \alpha \in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]